These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 32053348)
1. Design and Preparation of Carbon Nitride-Based Amphiphilic Janus N-Doped Carbon/MoS Zhang S; Deng Q; Shangguan H; Zheng C; Shi J; Huang F; Tang B ACS Appl Mater Interfaces; 2020 Mar; 12(10):12227-12237. PubMed ID: 32053348 [TBL] [Abstract][Full Text] [Related]
2. Hollow Mesoporous Carbon-Based Enzyme Nanoreactor for the Confined and Interfacial Biocatalytic Synthesis of Phytosterol Esters. Zhang S; Hou H; Zhao B; Zhou Q; Tang R; Chen L; Mao J; Deng Q; Zheng L; Shi J J Agric Food Chem; 2023 Feb; 71(4):2014-2025. PubMed ID: 36688464 [TBL] [Abstract][Full Text] [Related]
3. Preparation of Carriers Based on ZnO Nanoparticles Decorated on Graphene Oxide (GO) Nanosheets for Efficient Immobilization of Lipase from Candida rugosa. Zhang S; Shi J; Deng Q; Zheng M; Wan C; Zheng C; Li Y; Huang F Molecules; 2017 Jul; 22(7):. PubMed ID: 28753931 [TBL] [Abstract][Full Text] [Related]
4. Li Y; Ruan Z; Zheng M; Deng Q; Zhang S; Zheng C; Tang H; Huang F; Shi J RSC Adv; 2018 Apr; 8(26):14229-14236. PubMed ID: 35540739 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of Candida rugosa lipase on poly(3-hydroxybutyrate-co-hydroxyvalerate): a new eco-friendly support. Cabrera-Padilla RY; Lisboa MC; Fricks AT; Franceschi E; Lima AS; Silva DP; Soares CM J Ind Microbiol Biotechnol; 2012 Feb; 39(2):289-98. PubMed ID: 21870100 [TBL] [Abstract][Full Text] [Related]
6. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry. Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832 [TBL] [Abstract][Full Text] [Related]
7. Novel amphiphilic polyvinylpyrrolidone functionalized silicone particles as carrier for low-cost lipase immobilization. Zhang S; Deng Q; Li Y; Zheng M; Wan C; Zheng C; Tang H; Huang F; Shi J R Soc Open Sci; 2018 Jun; 5(6):172368. PubMed ID: 30110464 [TBL] [Abstract][Full Text] [Related]
8. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Temoçin Z J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345 [TBL] [Abstract][Full Text] [Related]
9. Design and characterization of immobilized biocatalyst with lipase activity onto magnetic magnesium spinel nanoparticles: A novel platform for biocatalysis. Romero CM; Spuches FC; Morales AH; Perotti NI; Navarro MC; Gómez MI Colloids Surf B Biointerfaces; 2018 Dec; 172():699-707. PubMed ID: 30245295 [TBL] [Abstract][Full Text] [Related]
10. Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Onoja E; Chandren S; Razak FIA; Wahab RA J Biotechnol; 2018 Oct; 283():81-96. PubMed ID: 30063951 [TBL] [Abstract][Full Text] [Related]
11. Activation and deformation of immobilized lipase on self-assembled monolayers with tailored wettability. Chen PC; Huang XJ; Xu ZK Phys Chem Chem Phys; 2015 May; 17(20):13457-65. PubMed ID: 25929434 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of lipases and assay in continuous fixed bed reactor. dos Reis-Costa L; Soares AM; França SC; Trevisan HC; Roberts TJ Protein Pept Lett; 2003 Dec; 10(6):619-28. PubMed ID: 14683514 [TBL] [Abstract][Full Text] [Related]
13. Mussel-inspired surface modification of magnetic@graphite nanosheets composite for efficient Candida rugosa lipase immobilization. Hou C; Zhou L; Zhu H; Wang X; Hu N; Zeng F; Wang L; Yin H J Ind Microbiol Biotechnol; 2015 May; 42(5):723-34. PubMed ID: 25752766 [TBL] [Abstract][Full Text] [Related]
14. Plasma-Assisted Controllable Doping of Nitrogen into MoS Feng L; Zhang L; Zhang S; Chen X; Li P; Gao Y; Xie S; Zhang A; Wang H ACS Appl Mater Interfaces; 2020 Apr; 12(15):17547-17556. PubMed ID: 32223269 [TBL] [Abstract][Full Text] [Related]
15. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations. Venditti I; Palocci C; Chronopoulou L; Fratoddi I; Fontana L; Diociaiuti M; Russo MV Colloids Surf B Biointerfaces; 2015 Jul; 131():93-101. PubMed ID: 25969418 [TBL] [Abstract][Full Text] [Related]
16. Lipase nanogel catalyzed synthesis of vitamin E succinate in non-aqueous phase. Jiaojiao X; Bin Z; Ruoyu Z; Onyinye AI J Sci Food Agric; 2021 Jun; 101(8):3186-3192. PubMed ID: 33216351 [TBL] [Abstract][Full Text] [Related]
17. Metal-Organic Frameworks Conjugated Lipase with Enhanced Bio-catalytic Activity and Stability. Zou B; Zhang L; Xia J; Wang P; Yan Y; Wang X; Adesanya IO Appl Biochem Biotechnol; 2020 Sep; 192(1):132-145. PubMed ID: 32323142 [TBL] [Abstract][Full Text] [Related]
18. A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes. Mohamad NR; Buang NA; Mahat NA; Lok YY; Huyop F; Aboul-Enein HY; Abdul Wahab R Enzyme Microb Technol; 2015 May; 72():49-55. PubMed ID: 25837507 [TBL] [Abstract][Full Text] [Related]
19. Tailoring a robust nanozyme formulation based on surfactant stabilized lipase immobilized onto newly fabricated magnetic silica anchored graphene nanocomposite: Aggrandized stability and application. Asmat S; Husain Q; Shoeb M; Mobin M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110883. PubMed ID: 32409040 [TBL] [Abstract][Full Text] [Related]
20. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application. Asmat S; Husain Q Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():25-36. PubMed ID: 30889698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]