These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 32053348)
41. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Hou C; Qi Z; Zhu H Colloids Surf B Biointerfaces; 2015 Apr; 128():544-551. PubMed ID: 25784302 [TBL] [Abstract][Full Text] [Related]
42. Assembly and mechanical response of amphiphilic Janus nanosheets at oil-water interfaces. Yin T; Yang Z; Zhang F; Lin M; Zhang J; Dong Z J Colloid Interface Sci; 2021 Feb; 583():214-221. PubMed ID: 33002693 [TBL] [Abstract][Full Text] [Related]
43. Preparation of porous hollow Fe Liu X Bioprocess Biosyst Eng; 2018 Jun; 41(6):771-779. PubMed ID: 29442184 [TBL] [Abstract][Full Text] [Related]
44. Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline. Yang R; Zhao J; Chen M; Yang T; Luo S; Jiao K Talanta; 2015 Jan; 131():619-23. PubMed ID: 25281149 [TBL] [Abstract][Full Text] [Related]
45. Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study. Yeşiloğlu Y; Şit L Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug; 39(4):247-51. PubMed ID: 21117873 [TBL] [Abstract][Full Text] [Related]
46. Effective enhancement of electron migration and photocatalytic performance of nitrogen-rich carbon nitride by constructing fungal carbon dot/molybdenum disulfide cocatalytic system. Teng M; Shi J; Qi H; Shi C; Wang W; Kang F; Eqi M; Huang Z J Colloid Interface Sci; 2022 Mar; 609():592-605. PubMed ID: 34848061 [TBL] [Abstract][Full Text] [Related]
47. Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS Yang T; Chen M; Kong Q; Luo X; Jiao K Biosens Bioelectron; 2017 Mar; 89(Pt 1):538-544. PubMed ID: 27005453 [TBL] [Abstract][Full Text] [Related]
48. Sulfur-Doped Porphyrinic Carbon Nanostructures Synthesized with Amorphous MoS Park HS; Han SB; Kwak DH; Lee GH; Choi IA; Kim DH; Ma KB; Kim MC; Kwon HJ; Park KW ChemSusChem; 2017 May; 10(10):2202-2209. PubMed ID: 28296248 [TBL] [Abstract][Full Text] [Related]
49. Polystyrene-Templated Aerosol Synthesis of MoS2 -Amorphous Carbon Composite with Open Macropores as Battery Electrode. Choi SH; Kang YC ChemSusChem; 2015 Jul; 8(13):2260-7. PubMed ID: 26098539 [TBL] [Abstract][Full Text] [Related]
50. Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. Voiry D; Salehi M; Silva R; Fujita T; Chen M; Asefa T; Shenoy VB; Eda G; Chhowalla M Nano Lett; 2013; 13(12):6222-7. PubMed ID: 24251828 [TBL] [Abstract][Full Text] [Related]
51. Enhanced conjugation of Candida rugosa lipase onto multiwalled carbon nanotubes using reverse micelles as attachment medium and application in nonaqueous biocatalysis. Raghavendra T; Vahora U; Shah AR; Madamwar D Biotechnol Prog; 2014; 30(4):828-36. PubMed ID: 24828252 [TBL] [Abstract][Full Text] [Related]
52. Ternary biogenic silica/magnetite/graphene oxide composite for the hyperactivation of Candida rugosa lipase in the esterification production of ethyl valerate. Jacob AG; Wahab RA; Mahat NA Enzyme Microb Technol; 2021 Aug; 148():109807. PubMed ID: 34116744 [TBL] [Abstract][Full Text] [Related]
53. Synthesis of sandwich-like molybdenum sulfide/mesoporous organosilica nanosheets for photo-thermal conversion and stimuli-responsive drug release. Su X; Wang J; Zhang J; Yuwen L; Zhang Q; Dang M; Tao J; Ma X; Wang S; Teng Z J Colloid Interface Sci; 2017 Jun; 496():261-266. PubMed ID: 28235720 [TBL] [Abstract][Full Text] [Related]
54. Enhancement of n-3 polyunsaturated fatty acid glycerides in Sardine oil by a bioimprinted cross-linked Candida rugosa lipase. Sampath C; Belur PD; Iyyasami R Enzyme Microb Technol; 2018 Mar; 110():20-29. PubMed ID: 29310852 [TBL] [Abstract][Full Text] [Related]
55. Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier. Badgujar KC; Bhanage BM Bioprocess Biosyst Eng; 2017 May; 40(5):741-757. PubMed ID: 28265745 [TBL] [Abstract][Full Text] [Related]
56. Preparation of Immobilized Lipase Based on Hollow Mesoporous Silica Spheres and Its Application in Ester Synthesis. Dong Z; Jiang MY; Shi J; Zheng MM; Huang FH Molecules; 2019 Jan; 24(3):. PubMed ID: 30678284 [TBL] [Abstract][Full Text] [Related]
57. Application of lipase immobilized on a hydrophobic support for the synthesis of aromatic esters. Dos Santos MMO; Gama RS; de Carvalho Tavares IM; Santos PH; Gonçalves MS; de Carvalho MS; de Barros Vilas Boas EV; de Oliveira JR; Mendes AA; Franco M Biotechnol Appl Biochem; 2021 Jun; 68(3):538-546. PubMed ID: 32438471 [TBL] [Abstract][Full Text] [Related]
58. ZnS/C/MoS Wei Q; Wang C; Li P; Wu T; Yang N; Wang X; Wang Y; Li C Small; 2019 Nov; 15(48):e1902086. PubMed ID: 31361083 [TBL] [Abstract][Full Text] [Related]
59. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. Lukowski MA; Daniel AS; Meng F; Forticaux A; Li L; Jin S J Am Chem Soc; 2013 Jul; 135(28):10274-7. PubMed ID: 23790049 [TBL] [Abstract][Full Text] [Related]