BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32053372)

  • 1. Effects of Boron Nitride Nanotube on the Secondary Structure of Aβ(1-42) Trimer: Possible Inhibitory Effect on Amyloid Formation.
    Sorout N; Chandra A
    J Phys Chem B; 2020 Mar; 124(10):1928-1940. PubMed ID: 32053372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of the Aβ(1-42) Peptide with Boron Nitride Nanoparticles of Varying Curvature in an Aqueous Medium: Different Pathways to Inhibit β-Sheet Formation.
    Sorout N; Chandra A
    J Phys Chem B; 2021 Oct; 125(40):11159-11178. PubMed ID: 34605235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An α-helix mimetic oligopyridylamide, ADH-31, modulates Aβ
    Kaur A; Goyal D; Goyal B
    Phys Chem Chem Phys; 2020 Dec; 22(48):28055-28073. PubMed ID: 33289734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-level study of the effects of O4 molecules on the structural properties of protofibrillar Aβ trimer: β-sheet stabilization, salt bridge protection, and binding mechanism.
    Sun Y; Xi W; Wei G
    J Phys Chem B; 2015 Feb; 119(7):2786-94. PubMed ID: 25608630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer's amyloid-β(16-22) peptide.
    Li H; Luo Y; Derreumaux P; Wei G
    Biophys J; 2011 Nov; 101(9):2267-76. PubMed ID: 22067167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations to investigate the aggregation behaviors of the Abeta(17-42) oligomers.
    Zhao JH; Liu HL; Liu YF; Lin HY; Fang HW; Ho Y; Tsai WB
    J Biomol Struct Dyn; 2009 Feb; 26(4):481-90. PubMed ID: 19108587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study.
    Zarghami Dehaghani M; Yousefi F; Bagheri B; Seidi F; Hamed Mashhadzadeh A; Rabiee N; Zarrintaj P; Mostafavi E; Saeb MR; Kim YC
    Int J Nanomedicine; 2021; 16():4277-4288. PubMed ID: 34194228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations.
    Liu FF; Liu Z; Bai S; Dong XY; Sun Y
    J Chem Phys; 2012 Apr; 136(14):145101. PubMed ID: 22502547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Norepinephrine Inhibits Alzheimer's Amyloid-β Peptide Aggregation and Destabilizes Amyloid-β Protofibrils: A Molecular Dynamics Simulation Study.
    Zou Y; Qian Z; Chen Y; Qian H; Wei G; Zhang Q
    ACS Chem Neurosci; 2019 Mar; 10(3):1585-1594. PubMed ID: 30605312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of 12-Crown-4 with Alzheimer's Aβ40 and Aβ42 Monomers and Its Effect on Their Conformation: Insight from Molecular Dynamics Simulations.
    Agrawal N; Skelton AA
    Mol Pharm; 2018 Jan; 15(1):289-299. PubMed ID: 29200307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.
    Khatti Z; Hashemianzadeh SM
    Eur J Pharm Sci; 2016 Jun; 88():291-7. PubMed ID: 27084121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.
    Sun Y; Qian Z; Wei G
    Phys Chem Chem Phys; 2016 May; 18(18):12582-91. PubMed ID: 27091578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT).
    Zarghami Dehaghani M; Yousefi F; Sajadi SM; Tajammal Munir M; Abida O; Habibzadeh S; Mashhadzadeh AH; Rabiee N; Mostafavi E; Saeb MR
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of carboxylated single-walled carbon nanotubes as highly efficient inhibitors against Aβ40 fibrillation based on the HyBER mechanism.
    Zhao W; Jiang L; Wang W; Sang J; Sun Q; Dong Q; Li L; Lu F; Liu F
    J Mater Chem B; 2021 Sep; 9(34):6902-6914. PubMed ID: 34612337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replica exchange molecular dynamics study of the truncated amyloid beta (11-40) trimer in solution.
    Ngo ST; Hung HM; Truong DT; Nguyen MT
    Phys Chem Chem Phys; 2017 Jan; 19(3):1909-1919. PubMed ID: 28004051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization Mechanism for a Nonfibrillar Amyloid β Oligomer Based on Formation of a Hydrophobic Core Determined by Dissipative Particle Dynamics.
    Kawai R; Chiba S; Okuwaki K; Kanada R; Doi H; Ono M; Mochizuki Y; Okuno Y
    ACS Chem Neurosci; 2020 Feb; 11(3):385-394. PubMed ID: 31899612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of all-atom force fields on amyloid oligomerization: replica exchange molecular dynamics simulations of the Aβ(16-22) dimer and trimer.
    Nguyen PH; Li MS; Derreumaux P
    Phys Chem Chem Phys; 2011 May; 13(20):9778-88. PubMed ID: 21487594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Study on the Assembly of Amyloid β-Peptides in the Hydrophobic Environment.
    Qu L; Fudo S; Matsuzaki K; Hoshino T
    Chem Pharm Bull (Tokyo); 2019; 67(9):959-965. PubMed ID: 31474736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetic contributions of residues to the formation of early amyloid-β oligomers.
    Pouplana R; Campanera JM
    Phys Chem Chem Phys; 2015 Jan; 17(4):2823-37. PubMed ID: 25503571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.