BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32053779)

  • 1. CRISPR-Mediated Protein Tagging with Nanoluciferase to Investigate Native Chemokine Receptor Function and Conformational Changes.
    White CW; Caspar B; Vanyai HK; Pfleger KDG; Hill SJ
    Cell Chem Biol; 2020 May; 27(5):499-510.e7. PubMed ID: 32053779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using nanoBRET and CRISPR/Cas9 to monitor proximity to a genome-edited protein in real-time.
    White CW; Vanyai HK; See HB; Johnstone EKM; Pfleger KDG
    Sci Rep; 2017 Jun; 7(1):3187. PubMed ID: 28600500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NanoBRET ligand binding at a GPCR under endogenous promotion facilitated by CRISPR/Cas9 genome editing.
    White CW; Johnstone EKM; See HB; Pfleger KDG
    Cell Signal; 2019 Feb; 54():27-34. PubMed ID: 30471466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Class A G protein-coupled receptors assemble into functional higher-order hetero-oligomers.
    Gao X; Enten GA; DeSantis AJ; Majetschak M
    FEBS Lett; 2021 Jul; 595(14):1863-1875. PubMed ID: 34032285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex Detection of Fluorescent Chemokine Binding to CXC Chemokine Receptors by NanoBRET.
    Adamska JM; Leftheriotis S; Bosma R; Vischer HF; Leurs R
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors.
    Jaracz-Ros A; Bernadat G; Cutolo P; Gallego C; Gustavsson M; Cecon E; Baleux F; Kufareva I; Handel TM; Bachelerie F; Levoye A
    J Leukoc Biol; 2020 Jun; 107(6):1123-1135. PubMed ID: 32374043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of CXCL12 binding to atypical chemokine receptor 3 reveal a role for the receptor N terminus in chemokine binding.
    Gustavsson M; Dyer DP; Zhao C; Handel TM
    Sci Signal; 2019 Sep; 12(598):. PubMed ID: 31506383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.
    Luker KE; Luker GD
    Methods Enzymol; 2016; 570():119-29. PubMed ID: 26921944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Split Gaussia luciferase for imaging ligand-receptor binding.
    Luker KE; Luker GD
    Methods Mol Biol; 2014; 1098():59-69. PubMed ID: 24166368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α
    Albee LJ; Eby JM; Tripathi A; LaPorte HM; Gao X; Volkman BF; Gaponenko V; Majetschak M
    J Am Heart Assoc; 2017 Aug; 6(8):. PubMed ID: 28862946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo imaging of ligand receptor binding with Gaussia luciferase complementation.
    Luker KE; Mihalko LA; Schmidt BT; Lewin SA; Ray P; Shcherbo D; Chudakov DM; Luker GD
    Nat Med; 2011 Dec; 18(1):172-7. PubMed ID: 22138753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide.
    Schwinn MK; Machleidt T; Zimmerman K; Eggers CT; Dixon AS; Hurst R; Hall MP; Encell LP; Binkowski BF; Wood KV
    ACS Chem Biol; 2018 Feb; 13(2):467-474. PubMed ID: 28892606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The peptidomimetic CXCR4 antagonist TC14012 recruits beta-arrestin to CXCR7: roles of receptor domains.
    Gravel S; Malouf C; Boulais PE; Berchiche YA; Oishi S; Fujii N; Leduc R; Sinnett D; Heveker N
    J Biol Chem; 2010 Dec; 285(49):37939-43. PubMed ID: 20956518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The luminescent HiBiT peptide enables selective quantitation of G protein-coupled receptor ligand engagement and internalization in living cells.
    Boursier ME; Levin S; Zimmerman K; Machleidt T; Hurst R; Butler BL; Eggers CT; Kirkland TA; Wood KV; Friedman Ohana R
    J Biol Chem; 2020 Apr; 295(15):5124-5135. PubMed ID: 32107310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioluminescent CXCL12 fusion protein for cellular studies of CXCR4 and CXCR7.
    Luker K; Gupta M; Luker G
    Biotechniques; 2009 Jul; 47(1):625-32. PubMed ID: 19594447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization.
    Zarca A; Perez C; van den Bor J; Bebelman JP; Heuninck J; de Jonker RJF; Durroux T; Vischer HF; Siderius M; Smit MJ
    Cells; 2021 Mar; 10(3):. PubMed ID: 33799570
    [No Abstract]   [Full Text] [Related]  

  • 17. Imaging ligand-dependent activation of CXCR7.
    Luker KE; Gupta M; Steele JM; Foerster BR; Luker GD
    Neoplasia; 2009 Oct; 11(10):1022-35. PubMed ID: 19794961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin.
    Saaber F; Schütz D; Miess E; Abe P; Desikan S; Ashok Kumar P; Balk S; Huang K; Beaulieu JM; Schulz S; Stumm R
    Cell Rep; 2019 Feb; 26(6):1473-1488.e9. PubMed ID: 30726732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional consequences of chemically-induced β-arrestin binding to chemokine receptors CXCR4 and CCR5 in the absence of ligand stimulation.
    Liebick M; Henze S; Vogt V; Oppermann M
    Cell Signal; 2017 Oct; 38():201-211. PubMed ID: 28733085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimised insert design for improved single-molecule imaging and quantification through CRISPR-Cas9 mediated knock-in.
    Khan AO; White CW; Pike JA; Yule J; Slater A; Hill SJ; Poulter NS; Thomas SG; Morgan NV
    Sci Rep; 2019 Oct; 9(1):14219. PubMed ID: 31578415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.