These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32053794)

  • 21. Tunable mid-infrared localized surface plasmon resonances in silicon nanowires.
    Chou LW; Shin N; Sivaram SV; Filler MA
    J Am Chem Soc; 2012 Oct; 134(39):16155-8. PubMed ID: 22985223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon nanowire optical waveguide (SNOW).
    Khorasaninejad M; Saini SS
    Opt Express; 2010 Oct; 18(22):23442-57. PubMed ID: 21164687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theory of Half-Space Light Absorption Enhancement for Leaky Mode Resonant Nanowires.
    Jia Y; Qiu M; Wu H; Cui Y; Fan S; Ruan Z
    Nano Lett; 2015 Aug; 15(8):5513-8. PubMed ID: 26171950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical far-field extinction of a single GaAs nanowire towards in situ size control of aerotaxy nanowire growth.
    Chen Y; Anttu N; Sivakumar S; Gompou E; Magnusson MH
    Nanotechnology; 2020 Mar; 31(13):134001. PubMed ID: 31917683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diameter- and Length-controlled Synthesis of Ultrathin ZnS Nanowires and Their Size-Dependent UV Absorption Properties, Photocatalytical Activities and Band-Edge Energy Levels.
    Xing G; Liu X; Hao S; Li X; Fan L; Li Y
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30736439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wavelength-dependent absorption in structurally tailored randomly branched vertical arrays of InSb nanowires.
    Mohammad A; Das SR; Khan MR; Alam MA; Janes DB
    Nano Lett; 2012 Dec; 12(12):6112-8. PubMed ID: 23131195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.
    Protasenko V; Bacinello D; Kuno M
    J Phys Chem B; 2006 Dec; 110(50):25322-31. PubMed ID: 17165978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical design of nanowire absorbers for wavelength selective photodetectors.
    Mokkapati S; Saxena D; Tan HH; Jagadish C
    Sci Rep; 2015 Oct; 5():15339. PubMed ID: 26469227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pressure tuning of the optical properties of GaAs nanowires.
    Zardo I; Yazji S; Marini C; Uccelli E; Fontcuberta i Morral A; Abstreiter G; Postorino P
    ACS Nano; 2012 Apr; 6(4):3284-91. PubMed ID: 22443867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon resonance spectroscopy of gold-in-gallium oxide peapod and core/shell nanowires.
    Wu YJ; Hsieh CH; Chen PH; Li JY; Chou LJ; Chen LJ
    ACS Nano; 2010 Mar; 4(3):1393-8. PubMed ID: 20148595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires.
    Lopez FJ; Hyun JK; Givan U; Kim IS; Holsteen AL; Lauhon LJ
    Nano Lett; 2012 May; 12(5):2266-71. PubMed ID: 22497202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy.
    Spirkoska D; Abstreiter G; Fontcuberta I Morral A
    Nanotechnology; 2008 Oct; 19(43):435704. PubMed ID: 21832708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonant modes of single silicon nanocavities excited by electron irradiation.
    Coenen T; van de Groep J; Polman A
    ACS Nano; 2013 Feb; 7(2):1689-98. PubMed ID: 23311326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silicon-Au nanowire resonators for high-Q multiband near-infrared wave absorption.
    Zhou J; Liu Z; Liu X; Pan P; Zhan X; Liu Z
    Nanotechnology; 2020 Sep; 31(37):375201. PubMed ID: 32485701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of dilute nitride GaAsN/GaAs heterostructure nanowires on Si substrates.
    Araki Y; Yamaguchi M; Ishikawa F
    Nanotechnology; 2013 Feb; 24(6):065601. PubMed ID: 23324475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.
    Spencer JH; Nesbitt JM; Trewhitt H; Kashtiban RJ; Bell G; Ivanov VG; Faulques E; Sloan J; Smith DC
    ACS Nano; 2014 Sep; 8(9):9044-52. PubMed ID: 25163005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells.
    Wang B; Stevens E; Leu PW
    Opt Express; 2014 Mar; 22 Suppl 2():A386-95. PubMed ID: 24922248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nondestructive Characterizations of Au-Catalyzed GaAs Nanowires on GaAs(111)B Substrates via Identifications of 1st Order Optical Phonon Modes Using
    Park JH; Kim RS; Park SJ; Park GC; Chung CH
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4358-4363. PubMed ID: 31968474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced Raman scattering from individual semiconductor nanocones and nanowires.
    Cao L; Nabet B; Spanier JE
    Phys Rev Lett; 2006 Apr; 96(15):157402. PubMed ID: 16712194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.