These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32053796)

  • 1. Charge and spin degrees of freedom in strongly correlated systems: Mott states opposite Hund's metals.
    Novoselov DY; Korotin DM; Shorikov AO; Anisimov VI
    J Phys Condens Matter; 2020 May; 32(23):235601. PubMed ID: 32053796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hund's metal regimes and orbital selective Mott transitions in three band systems.
    Facio JI; Cornaglia PS
    J Phys Condens Matter; 2019 Jun; 31(24):245602. PubMed ID: 30844779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground state of a three-band Hubbard model with Hund's coupling: Janus-faced behavior in presence of magnetic order.
    Maurya AK; Sarder MTH; Medhi A
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34298529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Disproportionation, Mixed Valence, and Janus Effect in Multiorbital Systems: A Tale of Two Insulators.
    Isidori A; Berović M; Fanfarillo L; De' Medici L; Fabrizio M; Capone M
    Phys Rev Lett; 2019 May; 122(18):186401. PubMed ID: 31144864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning emergent magnetism in a Hund's impurity.
    Khajetoorians AA; Valentyuk M; Steinbrecher M; Schlenk T; Shick A; Kolorenc J; Lichtenstein AI; Wehling TO; Wiesendanger R; Wiebe J
    Nat Nanotechnol; 2015 Nov; 10(11):958-64. PubMed ID: 26344182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial charge-transfer Mott state in iridate-nickelate superlattices.
    Liu X; Kotiuga M; Kim HS; N'Diaye AT; Choi Y; Zhang Q; Cao Y; Kareev M; Wen F; Pal B; Freeland JW; Gu L; Haskel D; Shafer P; Arenholz E; Haule K; Vanderbilt D; Rabe KM; Chakhalian J
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19863-19868. PubMed ID: 31527227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hallmarks of Hunds coupling in the Mott insulator Ca
    Sutter D; Fatuzzo CG; Moser S; Kim M; Fittipaldi R; Vecchione A; Granata V; Sassa Y; Cossalter F; Gatti G; Grioni M; Rønnow HM; Plumb NC; Matt CE; Shi M; Hoesch M; Kim TK; Chang TR; Jeng HT; Jozwiak C; Bostwick A; Rotenberg E; Georges A; Neupert T; Chang J
    Nat Commun; 2017 May; 8():15176. PubMed ID: 28474681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides.
    Watanabe H; Shirakawa T; Yunoki S
    Phys Rev Lett; 2010 Nov; 105(21):216410. PubMed ID: 21231335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbital-Selectivity-Induced Robust Quantum Anomalous Hall Effect in Hund's Metals MgFeP.
    Yao Q; Xue Y; Zhao B; Zhu Y; Li Z; Yang Z
    Nano Lett; 2024 Feb; 24(5):1563-1569. PubMed ID: 38262051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mott transition, magnetic and orbital orders in the ground state of the two-band Hubbard model using variational slave-spin mean field formalism.
    Maurya AK; Sarder MTH; Medhi A
    J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34710854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging orbital-selective quasiparticles in the Hund's metal state of FeSe.
    Kostin A; Sprau PO; Kreisel A; Chong YX; Böhmer AE; Canfield PC; Hirschfeld PJ; Andersen BM; Davis JCS
    Nat Mater; 2018 Oct; 17(10):869-874. PubMed ID: 30177690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermi Surface Expansion above Critical Temperature in a Hund Ferromagnet.
    Nomura Y; Sakai S; Arita R
    Phys Rev Lett; 2022 May; 128(20):206401. PubMed ID: 35657875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kondo resonance narrowing in d- and f-electron systems.
    Nevidomskyy AH; Coleman P
    Phys Rev Lett; 2009 Oct; 103(14):147205. PubMed ID: 19905601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model.
    Sherman A
    J Phys Condens Matter; 2018 May; 30(19):195601. PubMed ID: 29583129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the orbital selective Mott transition with variational wave functions.
    Tocchio LF; Arrigoni F; Sorella S; Becca F
    J Phys Condens Matter; 2016 Mar; 28(10):105602. PubMed ID: 26881997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orbital Isotropy of Magnetic Fluctuations in Correlated Electron Materials Induced by Hund's Exchange Coupling.
    Stepanov EA; Nomura Y; Lichtenstein AI; Biermann S
    Phys Rev Lett; 2021 Nov; 127(20):207205. PubMed ID: 34860069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum phase transition in the two-band hubbard model.
    Costi TA; Liebsch A
    Phys Rev Lett; 2007 Dec; 99(23):236404. PubMed ID: 18233389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective quantum parameter for strongly correlated metallic ferromagnets.
    Kamble B; Singh A
    J Phys Condens Matter; 2012 Feb; 24(8):086004. PubMed ID: 22277778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplet Resonating Valence Bond State and Superconductivity in Hund's Metals.
    Coleman P; Komijani Y; König EJ
    Phys Rev Lett; 2020 Aug; 125(7):077001. PubMed ID: 32857586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmates on the Verge of a Hund's-Mott Transition: The Different Fates of NaOsO_{3} and LiOsO_{3}.
    Springer D; Kim B; Liu P; Khmelevskyi S; Adler S; Capone M; Sangiovanni G; Franchini C; Toschi A
    Phys Rev Lett; 2020 Oct; 125(16):166402. PubMed ID: 33124875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.