These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 32054266)
1. Label-Free and Ultrasensitive Electrochemical DNA Biosensor Based on Urchinlike Carbon Nanotube-Gold Nanoparticle Nanoclusters. Han S; Liu W; Zheng M; Wang R Anal Chem; 2020 Apr; 92(7):4780-4787. PubMed ID: 32054266 [TBL] [Abstract][Full Text] [Related]
2. Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Huang KJ; Liu YJ; Wang HB; Wang YY; Liu YM Biosens Bioelectron; 2014 May; 55():195-202. PubMed ID: 24384259 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: a new platform for ultrasensitive DNA sensing. Li L; Wang S; Yang T; Huang S; Wang J Biosens Bioelectron; 2012 Mar; 33(1):279-83. PubMed ID: 22236779 [TBL] [Abstract][Full Text] [Related]
4. An enzyme-free electrochemical sandwich DNA assay based on the use of hybridization chain reaction and gold nanoparticles: application to the determination of the DNA of Helicobacter pylori. Lv MM; Fan SF; Wang QL; Lv QY; Song X; Cui HF Mikrochim Acta; 2019 Dec; 187(1):73. PubMed ID: 31863213 [TBL] [Abstract][Full Text] [Related]
5. Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites. He B; Du G Anal Bioanal Chem; 2018 May; 410(12):2901-2910. PubMed ID: 29500483 [TBL] [Abstract][Full Text] [Related]
6. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739 [TBL] [Abstract][Full Text] [Related]
7. A label-free aptasensor based on polyethyleneimine wrapped carbon nanotubes in situ formed gold nanoparticles as signal probe for highly sensitive detection of dopamine. Azadbakht A; Roushani M; Abbasi AR; Menati S; Derikvand Z Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():585-593. PubMed ID: 27524058 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Hu K; Lan D; Li X; Zhang S Anal Chem; 2008 Dec; 80(23):9124-30. PubMed ID: 19551936 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Chang H; Yuan Y; Shi N; Guan Y Anal Chem; 2007 Jul; 79(13):5111-5. PubMed ID: 17530821 [TBL] [Abstract][Full Text] [Related]
10. Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification. Liu S; Wei W; Wang Y; Fang L; Wang L; Li F Biosens Bioelectron; 2016 Jun; 80():208-214. PubMed ID: 26849348 [TBL] [Abstract][Full Text] [Related]
11. Zinc oxide-gold nanocomposite as a proper platform for label-free DNA biosensor. Hatami Z; Ragheb E; Jalali F; Tabrizi MA; Shamsipur M Bioelectrochemistry; 2020 Jun; 133():107458. PubMed ID: 32006859 [TBL] [Abstract][Full Text] [Related]
12. Ultrasensitive electrochemical sensing platform for miRNA-21 detection based on manganese dioxide-gold nanoparticle nanoconjugates coupled with hybridization chain reaction and horseradish peroxidase signal amplification. Li M; Zhang T; Zhang Y Analyst; 2023 May; 148(9):2180-2188. PubMed ID: 37066446 [TBL] [Abstract][Full Text] [Related]
13. Sandwich-type microRNA biosensor based on graphene oxide incorporated 3D-flower-like MoS Dong J; Yang H; Zhao J; Wen L; He C; Hu Z; Li J; Huo D; Hou C Mikrochim Acta; 2022 Jan; 189(1):49. PubMed ID: 34989881 [TBL] [Abstract][Full Text] [Related]
14. A label-free electrochemical biosensor for highly sensitive and selective detection of DNA via a dual-amplified strategy. Kong RM; Song ZL; Meng HM; Zhang XB; Shen GL; Yu RQ Biosens Bioelectron; 2014 Apr; 54():442-7. PubMed ID: 24315876 [TBL] [Abstract][Full Text] [Related]
15. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Lee J; Morita M; Takemura K; Park EY Biosens Bioelectron; 2018 Apr; 102():425-431. PubMed ID: 29175218 [TBL] [Abstract][Full Text] [Related]
16. Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles-graphene modified electrode with enzyme functionalized carbon sphere as tracer. Dong H; Zhu Z; Ju H; Yan F Biosens Bioelectron; 2012 Mar; 33(1):228-32. PubMed ID: 22305443 [TBL] [Abstract][Full Text] [Related]
17. Design of one-to-one recognition triple Au nanoparticles DNA probe and its application in the electrochemical DNA biosensor. Zhong H; Lei X; Hun X; Zhang S Chem Commun (Camb); 2009 Dec; (45):6958-60. PubMed ID: 19904360 [TBL] [Abstract][Full Text] [Related]
18. Impedimetric aptasensor for kanamycin by using carbon nanotubes modified with MoSe Azadbakht A; Abbasi AR Mikrochim Acta; 2018 Dec; 186(1):23. PubMed ID: 30560387 [TBL] [Abstract][Full Text] [Related]
19. Silver nanoclusters-assisted triple-amplified biosensor for ultrasensitive methyltransferase activity detection based on AuNPs/ERGO hybrids and hybridization chain reaction. Peng X; Zhu J; Wen W; Bao T; Zhang X; He H; Wang S Biosens Bioelectron; 2018 Oct; 118():174-180. PubMed ID: 30077131 [TBL] [Abstract][Full Text] [Related]
20. Low-background electrochemical biosensor for one-step detection of base excision repair enzyme. Zhao MH; Cui L; Sun B; Wang Q; Zhang CY Biosens Bioelectron; 2020 Feb; 150():111865. PubMed ID: 31740260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]