These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 32054270)

  • 1. Identification and Characterization of an Efficient d-Xylose Transporter in
    Jiang Y; Shen Y; Gu L; Wang Z; Su N; Niu K; Guo W; Hou S; Bao X; Tian C; Fang X
    J Agric Food Chem; 2020 Mar; 68(9):2702-2710. PubMed ID: 32054270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of residues important for substrate uptake in a glucose transporter from the filamentous fungus Trichoderma reesei.
    Zhang W; Cao Y; Gong J; Bao X; Chen G; Liu W
    Sci Rep; 2015 Sep; 5():13829. PubMed ID: 26345619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose.
    Farwick A; Bruder S; Schadeweg V; Oreb M; Boles E
    Proc Natl Acad Sci U S A; 2014 Apr; 111(14):5159-64. PubMed ID: 24706835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter.
    Leandro MJ; Gonçalves P; Spencer-Martins I
    Biochem J; 2006 May; 395(3):543-9. PubMed ID: 16402921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose uptake in Trichoderma harzianum: role of gtt1.
    Delgado-Jarana J; Moreno-Mateos MA; Benítez T
    Eukaryot Cell; 2003 Aug; 2(4):708-17. PubMed ID: 12912890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production.
    Gao M; Zhao Y; Yao Z; Su Q; Van Beek P; Shao Z
    Nat Commun; 2023 Nov; 14(1):7797. PubMed ID: 38016984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of sugar-regulated promoters in Chaetomium thermophilum.
    Reislöhner S; Schermann G; Kilian M; Santamaría-Muñoz D; Zimmerli C; Kellner N; Baßler J; Brunner M; Hurt E
    BMC Biotechnol; 2023 Jul; 23(1):19. PubMed ID: 37422618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning of Protein Interactions in Fungal Secretory Pathways.
    Kludas J; Arvas M; Castillo S; Pakula T; Oja M; Brouard C; Jäntti J; Penttilä M; Rousu J
    PLoS One; 2016; 11(7):e0159302. PubMed ID: 27441920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Characterization of a Hexose Transporter from Root Endophyte Piriformospora indica.
    Rani M; Raj S; Dayaman V; Kumar M; Dua M; Johri AK
    Front Microbiol; 2016; 7():1083. PubMed ID: 27499747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An atlas of rational genetic engineering strategies for improved xylose metabolism in
    Vargas BO; Dos Santos JR; Pereira GAG; de Mello FDSB
    PeerJ; 2023; 11():e16340. PubMed ID: 38047029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of xylose epimerase on sugar assimilation and sensing in recombinant Saccharomyces cerevisiae carrying different xylose-utilization pathways.
    Persson VC; Perruca Foncillas R; Anderes TR; Ginestet C; Gorwa-Grauslund M
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):168. PubMed ID: 37932829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of ER-localized sugar transporters for cellulase production with lac1 being essential.
    Wang H; Pang AP; Wang W; Li B; Li C; Wu FG; Lin F
    Biotechnol Biofuels Bioprod; 2022 Nov; 15(1):132. PubMed ID: 36443855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Transgene Expression by the Natural Sweetener Xylose.
    Galvan S; Madderson O; Xue S; Teixeira AP; Fussenegger M
    Adv Sci (Weinh); 2022 Dec; 9(34):e2203193. PubMed ID: 36316222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Omics analysis coupled with gene editing revealed potential transporters and regulators related to levoglucosan metabolism efficiency of the engineered Escherichia coli.
    Chang D; Wang C; Ul Islam Z; Yu Z
    Biotechnol Biofuels Bioprod; 2022 Jan; 15(1):2. PubMed ID: 35418138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for Efficient Expression of Heterologous Monosaccharide Transporters in
    Knychala MM; Dos Santos AA; Kretzer LG; Gelsleichter F; Leandro MJ; Fonseca C; Stambuk BU
    J Fungi (Basel); 2022 Jan; 8(1):. PubMed ID: 35050024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D-Xylose Sensing in
    Brink DP; Borgström C; Persson VC; Ofuji Osiro K; Gorwa-Grauslund MF
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of key residues for efficient glucose transport by the hexose transporter CgHxt4 in high sugar fermentation yeast Candida glycerinogenes.
    Qiao Y; Li C; Lu X; Zong H; Zhuge B
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7295-7307. PubMed ID: 34515842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of a highly specific L-arabinose transporter from Trichoderma reesei.
    Havukainen S; Pujol-Giménez J; Valkonen M; Hediger MA; Landowski CP
    Microb Cell Fact; 2021 Sep; 20(1):177. PubMed ID: 34496831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological characterization of a diverse group of sugar transporters from Trichoderma reesei.
    Havukainen S; Pujol-Giménez J; Valkonen M; Westerholm-Parvinen A; Hediger MA; Landowski CP
    Sci Rep; 2021 Jul; 11(1):14678. PubMed ID: 34282161
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.