These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32054573)

  • 1. High-Figure-of-Merit X-Cut Lithium Niobate MEMS Resonators Operating Around 50 MHz for Large Passive Voltage Amplification in Radio Frequency Applications.
    Colombo L; Kochhar A; Vidal-Alvarez G; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1392-1402. PubMed ID: 32054573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air.
    Eisner SR; Chapin CA; Lu R; Yang Y; Gong S; Senesky DG
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wideband Oscillator Exploiting Multiple Resonances in Lithium Niobate MEMS Resonator.
    Kourani A; Lu R; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1854-1866. PubMed ID: 32324549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipation Analysis Methods and Q-Enhancement Strategies in Piezoelectric MEMS Laterally Vibrating Resonators: A Review.
    Tu C; Lee JE; Zhang XS
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Figure of Merit Enhancement of Laterally Vibrating RF-MEMS Resonators via Energy-Preserving Addendum Frame.
    Workie TB; Wu Z; Tang P; Bao J; Hashimoto KY
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium Niobate Phononic Crystals for Tailoring Performance of RF Laterally Vibrating Devices.
    Lu R; Manzaneque T; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):934-944. PubMed ID: 29856710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-high-frequency two-port AlN contour-mode resonators for RF applications.
    Rinaldi M; Zuniga C; Zuo C; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):38-45. PubMed ID: 20040424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Al
    Luo Z; Shao S; Wu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Nov; 69(11):3108-3116. PubMed ID: 34914586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO
    Liu Y; Liu K; Li J; Li Y; Wu T
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Based Modeling and Generic Design Optimization Methodology for Radio-Frequency Microelectromechanical Devices.
    Bajwa R; Yapici MK
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study on the Effects of Bottom Electrode Designs on Aluminum Nitride Contour-Mode Resonators.
    Jung SI; Ryu C; Piazza G; Kim HJ
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31703310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BAW Resonator with an Optimized SiO
    Lv L; Shuai Y; Huang S; Zhu D; Wang Y; Luo W; Wu C; Zhang W
    ACS Omega; 2022 Jun; 7(24):20994-20999. PubMed ID: 35935285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh Frequency Nanomechanical Piezoresistive Amplifiers for Direct Channel-Selective Receiver Front-Ends.
    Ramezany A; Pourkamali S
    Nano Lett; 2018 Apr; 18(4):2551-2556. PubMed ID: 29589755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Sensitivity Gravimetric Biosensor Based on S
    Luo T; Liu W; Wen Z; Xie Y; Tong X; Cai Y; Liu Y; Sun C
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 6-20 GHz 30% ScAlN Lateral Field-Excited Cross-Sectional Lamé Mode Resonators for Future Mobile RF Front Ends.
    Giribaldi G; Colombo L; Rinaldi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1201-1212. PubMed ID: 37676795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a Solid-State Tuning Behavior in Lithium Niobate.
    Branch DW; Jensen DS; Nordquist CD; Siddiqui A; Douglas JK; Eichenfield M; Friedmann TA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):365-373. PubMed ID: 31567077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modal-Transition-Induced Valleys of
    Xie Z; Sun J; Xie J
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and simulated performance of lithium niobate 1-3 piezocomposites for 2 MHz non-destructive testing applications.
    Kirk KJ; Schmarje N
    Ultrasonics; 2013 Jan; 53(1):185-90. PubMed ID: 22784707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation.
    Wang J; Bo F; Wan S; Li W; Gao F; Li J; Zhang G; Xu J
    Opt Express; 2015 Sep; 23(18):23072-8. PubMed ID: 26368411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral Spurious Mode Suppression in Lithium Niobate A1 Resonators.
    Yang Y; Gao L; Lu R; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1930-1937. PubMed ID: 33395393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.