BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32054586)

  • 1. Mid-Air Tactile Feedback Co-Located With Virtual Touchscreen Improves Dual-Task Performance.
    Korres G; Chehabeddine S; Eid M
    IEEE Trans Haptics; 2020; 13(4):825-830. PubMed ID: 32054586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feel the noise: Mid-air ultrasound haptics as a novel human-vehicle interaction paradigm.
    Large DR; Harrington K; Burnett G; Georgiou O
    Appl Ergon; 2019 Nov; 81():102909. PubMed ID: 31422270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Road Evaluation of In-vehicle Interface Characteristics and Their Effects on Performance of Visual Detection on the Road and Manual Entry.
    Suh Y; Ferris TK
    Hum Factors; 2019 Feb; 61(1):105-118. PubMed ID: 30059239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating secondary input devices to support an automotive touchscreen HMI: A cross-cultural simulator study conducted in the UK and China.
    Large DR; Burnett G; Crundall E; Lawson G; Skrypchuk L; Mouzakitis A
    Appl Ergon; 2019 Jul; 78():184-196. PubMed ID: 31046950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of touchscreen versus keyboard/mouse interaction for large screen process control displays.
    Noah B; Li J; Rothrock L
    Appl Ergon; 2017 Oct; 64():1-13. PubMed ID: 28610809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Where's My Button? Evaluating the User Experience of Surface Haptics in Featureless Automotive User Interfaces.
    Breitschaft SJ; Pastukhov A; Carbon CC
    IEEE Trans Haptics; 2022; 15(2):292-303. PubMed ID: 34826298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-Air Tactile Stimulation for Pain Distraction.
    Karafotias G; Korres G; Teranishi A; Park W; Eid M; Karafotias G; Korres G; Teranishi A; Wanjoo Park ; Eid M; Teranishi A; Korres G; Park W; Karafotias G; Eid M
    IEEE Trans Haptics; 2018; 11(2):185-191. PubMed ID: 29911977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Non-Touchscreen Tactile Wearable Interface as an Alternative to Touchscreen-Based Wearable Devices.
    Yoon H; Park SH
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32111082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tactile feedback on movement speed and precision during work-related tasks using a computer mouse.
    Viau A; Najm M; Chapman CE; Levin MF
    Hum Factors; 2005; 47(4):816-26. PubMed ID: 16553068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Auditory Feedback on Tactile Intensity Perception in a Touchscreen Application.
    Won HI; Altinsoy ME
    IEEE Trans Haptics; 2020; 13(2):343-353. PubMed ID: 31634144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Usability study of multiple vibrotactile feedback stimuli in an entire virtual keyboard input.
    Kung CH; Hsieh TC; Smith S
    Appl Ergon; 2021 Jan; 90():103270. PubMed ID: 32920221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haptic force-feedback devices for the office computer: performance and musculoskeletal loading issues.
    Dennerlein JT; Yang MC
    Hum Factors; 2001; 43(2):278-86. PubMed ID: 11592668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile Feedback of Object Slip Facilitates Virtual Object Manipulation.
    Walker JM; Blank AA; Shewokis PA; OMalley MK
    IEEE Trans Haptics; 2015; 8(4):454-66. PubMed ID: 25861087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.
    Jin SA
    Cyberpsychol Behav Soc Netw; 2010 Jun; 13(3):307-11. PubMed ID: 20557250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.
    Lemole GM; Banerjee PP; Luciano C; Neckrysh S; Charbel FT
    Neurosurgery; 2007 Jul; 61(1):142-8; discussion 148-9. PubMed ID: 17621029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of feedback on attitudes toward cellular phone use while driving: a comparison between novice and experienced drivers.
    Wang Y; Zhang W; Reimer B; Lavallière M; Lesch MF; Horrey WJ; Wu S
    Traffic Inj Prev; 2010 Oct; 11(5):471-7. PubMed ID: 20872302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changing drivers' attitudes towards mobile phone use through participative simulation testing and feedback.
    Wang Y; Zhang W; Lesch MF; Horrey WJ; Chen C; Wu S
    Inj Prev; 2009 Dec; 15(6):384-9. PubMed ID: 19959730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Touchscreen interfaces in context: A systematic review of research into touchscreens across settings, populations, and implementations.
    Orphanides AK; Nam CS
    Appl Ergon; 2017 May; 61():116-143. PubMed ID: 28237011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring listening effort: driving simulator versus simple dual-task paradigm.
    Wu YH; Aksan N; Rizzo M; Stangl E; Zhang X; Bentler R
    Ear Hear; 2014; 35(6):623-32. PubMed ID: 25083599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a wheelchair virtual driving environment: trials with subjects with traumatic brain injury.
    Spaeth DM; Mahajan H; Karmarkar A; Collins D; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2008 May; 89(5):996-1003. PubMed ID: 18452751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.