These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32054763)

  • 1. Major role of particle fragmentation in regulating biological sequestration of CO
    Briggs N; Dall'Olmo G; Claustre H
    Science; 2020 Feb; 367(6479):791-793. PubMed ID: 32054763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocean carbon sequestration: Particle fragmentation by copepods as a significant unrecognised factor?: Explicitly representing the role of copepods in biogeochemical models may fundamentally improve understanding of future ocean carbon storage.
    Mayor DJ; Gentleman WC; Anderson TR
    Bioessays; 2020 Dec; 42(12):e2000149. PubMed ID: 33174616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump.
    Agusti S; González-Gordillo JI; Vaqué D; Estrada M; Cerezo MI; Salazar G; Gasol JM; Duarte CM
    Nat Commun; 2015 Jul; 6():7608. PubMed ID: 26158221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial gardening in the ocean's twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus: fragmentation of refractory detritus by zooplankton beneath the euphotic zone stimulates the harvestable production of labile and nutritious microbial biomass.
    Mayor DJ; Sanders R; Giering SL; Anderson TR
    Bioessays; 2014 Dec; 36(12):1132-7. PubMed ID: 25220362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean.
    Jiao N; Herndl GJ; Hansell DA; Benner R; Kattner G; Wilhelm SW; Kirchman DL; Weinbauer MG; Luo T; Chen F; Azam F
    Nat Rev Microbiol; 2010 Aug; 8(8):593-9. PubMed ID: 20601964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.
    Watson AJ; Bakker DC; Ridgwell AJ; Boyd PW; Law CS
    Nature; 2000 Oct; 407(6805):730-3. PubMed ID: 11048716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ocean acidification on the ballast of surface aggregates sinking through the twilight zone.
    de Jesus Mendes PA; Thomsen L
    PLoS One; 2012; 7(12):e50865. PubMed ID: 23272075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms and Pathways of Small-Phytoplankton Export from the Surface Ocean.
    Richardson TL
    Ann Rev Mar Sci; 2019 Jan; 11():57-74. PubMed ID: 29996063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle.
    Edwards BR; Bidle KD; Van Mooy BA
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5909-14. PubMed ID: 25918397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological carbon pump estimate based on multidecadal hydrographic data.
    Wang WL; Fu W; Le Moigne FAC; Letscher RT; Liu Y; Tang JM; Primeau FW
    Nature; 2023 Dec; 624(7992):579-585. PubMed ID: 38057667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron, phytoplankton growth, and the carbon cycle.
    Street JH; Paytan A
    Met Ions Biol Syst; 2005; 43():153-93. PubMed ID: 16370118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Export in the Ocean: A Biologist's Perspective.
    Iversen MH
    Ann Rev Mar Sci; 2023 Jan; 15():357-381. PubMed ID: 36055975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconciliation of the carbon budget in the ocean's twilight zone.
    Giering SL; Sanders R; Lampitt RS; Anderson TR; Tamburini C; Boutrif M; Zubkov MV; Marsay CM; Henson SA; Saw K; Cook K; Mayor DJ
    Nature; 2014 Mar; 507(7493):480-3. PubMed ID: 24670767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coccolithovirus facilitation of carbon export in the North Atlantic.
    Laber CP; Hunter JE; Carvalho F; Collins JR; Hunter EJ; Schieler BM; Boss E; More K; Frada M; Thamatrakoln K; Brown CM; Haramaty L; Ossolinski J; Fredricks H; Nissimov JI; Vandzura R; Sheyn U; Lehahn Y; Chant RJ; Martins AM; Coolen MJL; Vardi A; DiTullio GR; Van Mooy BAS; Bidle KD
    Nat Microbiol; 2018 May; 3(5):537-547. PubMed ID: 29531367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D intrusions transport active surface microbial assemblages to the dark ocean.
    Freilich MA; Poirier C; Dever M; Alou-Font E; Allen J; Cabornero A; Sudek L; Choi CJ; Ruiz S; Pascual A; Farrar JT; Johnston TMS; D'Asaro EA; Worden AZ; Mahadevan A
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2319937121. PubMed ID: 38696469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-faceted particle pumps drive carbon sequestration in the ocean.
    Boyd PW; Claustre H; Levy M; Siegel DA; Weber T
    Nature; 2019 Apr; 568(7752):327-335. PubMed ID: 30996317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics.
    Omand MM; Govindarajan R; He J; Mahadevan A
    Sci Rep; 2020 Mar; 10(1):5582. PubMed ID: 32221314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin.
    Cai WJ; Chen L; Chen B; Gao Z; Lee SH; Chen J; Pierrot D; Sullivan K; Wang Y; Hu X; Huang WJ; Zhang Y; Xu S; Murata A; Grebmeier JM; Jones EP; Zhang H
    Science; 2010 Jul; 329(5991):556-9. PubMed ID: 20651119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting carbon flux through the ocean's twilight zone.
    Buesseler KO; Lamborg CH; Boyd PW; Lam PJ; Trull TW; Bidigare RR; Bishop JK; Casciotti KL; Dehairs F; Elskens M; Honda M; Karl DM; Siegel DA; Silver MW; Steinberg DK; Valdes J; Van Mooy B; Wilson S
    Science; 2007 Apr; 316(5824):567-70. PubMed ID: 17463282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications for the mesopelagic microbial gardening hypothesis as determined by experimental fragmentation of Antarctic krill fecal pellets.
    Cavan EL; Kawaguchi S; Boyd PW
    Ecol Evol; 2021 Jan; 11(2):1023-1036. PubMed ID: 33520184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.