BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32054784)

  • 1. High-fidelity continuum modeling predicts avian voiced sound production.
    Jiang W; Rasmussen JH; Xue Q; Ding M; Zheng X; Elemans CPH
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4718-4723. PubMed ID: 32054784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of the syrinx: An acoustic theory.
    Riede T; Thomson SL; Titze IR; Goller F
    PLoS Biol; 2019 Feb; 17(2):e2006507. PubMed ID: 30730882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying syringeal dynamics
    Rasmussen JH; Herbst CT; Elemans CPH
    J Exp Biol; 2018 Aug; 221(Pt 16):. PubMed ID: 29880637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanics and control of vocalization in a non-songbird.
    Elemans CP; Zaccarelli R; Herzel H
    J R Soc Interface; 2008 Jul; 5(24):691-703. PubMed ID: 17999946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal mechanisms of sound production and control in birds and mammals.
    Elemans CP; Rasmussen JH; Herbst CT; Düring DN; Zollinger SA; Brumm H; Srivastava K; Svane N; Ding M; Larsen ON; Sober SJ; Švec JG
    Nat Commun; 2015 Nov; 6():8978. PubMed ID: 26612008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional morphology of the Alligator mississippiensis larynx with implications for vocal production.
    Riede T; Li Z; Tokuda IT; Farmer CG
    J Exp Biol; 2015 Apr; 218(Pt 7):991-8. PubMed ID: 25657203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bond graph approach to modeling the anuran vocal production system.
    Kime NM; Ryan MJ; Wilson PS
    J Acoust Soc Am; 2013 Jun; 133(6):4133-44. PubMed ID: 23742365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.
    Mencio C; Kuberan B; Goller F
    J Neurophysiol; 2017 Feb; 117(2):637-645. PubMed ID: 27852738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical origin of spectrally rich vocalizations in birdsong.
    Sitt JD; Amador A; Goller F; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011905. PubMed ID: 18763980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling source-source and source-filter acoustic interaction in birdsong.
    Laje R; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036218. PubMed ID: 16241559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid approach to the computational aeroacoustics of human voice production.
    Šidlof P; Zörner S; Hüppe A
    Biomech Model Mechanobiol; 2015 Jun; 14(3):473-88. PubMed ID: 25288479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New perspectives on the origins of the unique vocal tract of birds.
    Habib MB
    PLoS Biol; 2019 Mar; 17(3):e3000184. PubMed ID: 30921320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology and the evolution of vocal folds in the novel avian voice box.
    Longtine C; Eliason CM; Mishkind D; Lee C; Chiappone M; Goller F; Love J; Kingsley EP; Clarke JA; Tabin CJ
    Curr Biol; 2024 Feb; 34(3):461-472.e7. PubMed ID: 38183987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral source acoustic interaction in a syrinx model of an oscine bird.
    Laje R; Sciamarella D; Zanella J; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011912. PubMed ID: 18351881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference between the vocalizations of two sister species of pigeons explained in dynamical terms.
    Alonso RG; Kopuchian C; Amador A; Suarez Mde L; Tubaro PL; Mindlin GB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 May; 202(5):361-70. PubMed ID: 27033354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.
    Titze I; Riede T; Mau T
    PLoS Comput Biol; 2016 Jun; 12(6):e1004907. PubMed ID: 27309543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physiological and acoustic study on voiced bilabial fricative/beta:/as a vocal exercise.
    Laukkanen AM; Lindholm P; Vilkman E; Haataja K; Alku P
    J Voice; 1996 Mar; 10(1):67-77. PubMed ID: 8653180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the intentional acoustic behavior of humpback whales: a production-based approach.
    Cazau D; Adam O; Laitman JT; Reidenberg JS
    J Acoust Soc Am; 2013 Sep; 134(3):2268-73. PubMed ID: 23967956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.