These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32054784)

  • 21. Automatic reconstruction of physiological gestures used in a model of birdsong production.
    Boari S; Perl YS; Amador A; Margoliash D; Mindlin GB
    J Neurophysiol; 2015 Nov; 114(5):2912-22. PubMed ID: 26378204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Realistic three-dimensional avian vocal tract model demonstrates how shape affects sound filtering (
    Kazemi A; Kesba M; Provini P
    J R Soc Interface; 2023 Jan; 20(198):20220728. PubMed ID: 36695126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiologically driven avian vocal synthesizer.
    Sitt JD; Arneodo EM; Goller F; Mindlin GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031927. PubMed ID: 20365790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amplitude and frequency modulation control of sound production in a mechanical model of the avian syrinx.
    Elemans CP; Muller M; Larsen ON; van Leeuwen JL
    J Exp Biol; 2009 Apr; 212(Pt 8):1212-24. PubMed ID: 19329754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An anatomically based, time-domain acoustic model of the subglottal system for speech production.
    Ho JC; Zañartu M; Wodicka GR
    J Acoust Soc Am; 2011 Mar; 129(3):1531-47. PubMed ID: 21428517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Songbirds use pulse tone register in two voices to generate low-frequency sound.
    Jensen KK; Cooper BG; Larsen ON; Goller F
    Proc Biol Sci; 2007 Nov; 274(1626):2703-10. PubMed ID: 17725979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The shouted voice: A pilot study of laryngeal physiology under extreme aerodynamic pressure.
    Lagier A; Legou T; Galant C; Amy de La Bretèque B; Meynadier Y; Giovanni A
    Logoped Phoniatr Vocol; 2017 Dec; 42(4):141-145. PubMed ID: 27484505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclicity of laryngeal cavity resonance due to vocal fold vibration.
    Kitamura T; Takemoto H; Adachi S; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2239-49. PubMed ID: 17069319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerodynamics of the human larynx during vocal fold vibration.
    Plant RL
    Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The source-filter theory of whistle-like calls in marmosets: Acoustic analysis and simulation of helium-modulated voices.
    Koda H; Tokuda IT; Wakita M; Ito T; Nishimura T
    J Acoust Soc Am; 2015 Jun; 137(6):3068-76. PubMed ID: 26093398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational model for vocal tract dynamics in a suboscine bird.
    Assaneo MF; Trevisan MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031906. PubMed ID: 21230107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere.
    Nowicki S
    Nature; 1987 Jan 1-7; 325(6099):53-5. PubMed ID: 3796738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx.
    Düring DN; Knörlein BJ; Elemans CPH
    Sci Rep; 2017 Sep; 7(1):11296. PubMed ID: 28900151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New perspectives on the physics of birdsong.
    Trevisan MA; Mindlin GB
    Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3239-54. PubMed ID: 19620121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model.
    Devine EE; Hoffman MR; McCulloch TM; Jiang JJ
    Laryngoscope; 2017 Feb; 127(2):396-404. PubMed ID: 27223665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motor mechanisms of a vocal mimic: implications for birdsong production.
    Zollinger SA; Suthers RA
    Proc Biol Sci; 2004 Mar; 271(1538):483-91. PubMed ID: 15129958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Common Terminology and Acoustic Measures for Human Voice and Birdsong.
    Badwal A; Poertner J; Samlan RA; Miller JE
    J Speech Lang Hear Res; 2019 Jan; 62(1):60-69. PubMed ID: 30540871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments.
    Tokuda IT; Horácek J; Svec JG; Herzel H
    J Acoust Soc Am; 2007 Jul; 122(1):519-31. PubMed ID: 17614509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.