These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32054834)

  • 1. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening.
    Gowers GF; Chee SM; Bell D; Suckling L; Kern M; Tew D; McClymont DW; Ellis T
    Nat Commun; 2020 Feb; 11(1):868. PubMed ID: 32054834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-Colony Screening of Biosynthetic Libraries by Rapid Laser-Enabled Mass Spectrometry.
    Gowers GF; Cameron SJS; Perdones-Montero A; Bell D; Chee SM; Kern M; Tew D; Ellis T; Takáts Z
    ACS Synth Biol; 2019 Nov; 8(11):2566-2575. PubMed ID: 31622554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCRaMbLE-in: A Fast and Efficient Method to Diversify and Improve the Yields of Heterologous Pathways in Synthetic Yeast.
    Swidah R; Auxillos J; Liu W; Jones S; Chan TF; Dai J; Cai Y
    Methods Mol Biol; 2020; 2205():305-327. PubMed ID: 32809206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCRaMbLE generates evolved yeasts with increased alkali tolerance.
    Ma L; Li Y; Chen X; Ding M; Wu Y; Yuan YJ
    Microb Cell Fact; 2019 Mar; 18(1):52. PubMed ID: 30857530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome.
    Blount BA; Gowers GF; Ho JCH; Ledesma-Amaro R; Jovicevic D; McKiernan RM; Xie ZX; Li BZ; Yuan YJ; Ellis T
    Nat Commun; 2018 May; 9(1):1932. PubMed ID: 29789540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods.
    Liu W; Luo Z; Wang Y; Pham NT; Tuck L; Pérez-Pi I; Liu L; Shen Y; French C; Auer M; Marles-Wright J; Dai J; Cai Y
    Nat Commun; 2018 May; 9(1):1936. PubMed ID: 29789543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways.
    Li J; Zhang Y
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3081-9. PubMed ID: 24389702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid.
    Huang J; Zha W; An T; Dong H; Huang Y; Wang D; Yu R; Duan L; Zhang X; Peters RJ; Dai Z; Zi J
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):7029-7039. PubMed ID: 31309269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro DNA SCRaMbLE.
    Wu Y; Zhu RY; Mitchell LA; Ma L; Liu R; Zhao M; Jia B; Xu H; Li YX; Yang ZM; Ma Y; Li X; Liu H; Liu D; Xiao WH; Zhou X; Li BZ; Yuan YJ; Boeke JD
    Nat Commun; 2018 May; 9(1):1935. PubMed ID: 29789594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterozygous diploid and interspecies SCRaMbLEing.
    Shen MJ; Wu Y; Yang K; Li Y; Xu H; Zhang H; Li BZ; Li X; Xiao WH; Zhou X; Mitchell LA; Bader JS; Yuan Y; Boeke JD
    Nat Commun; 2018 May; 9(1):1934. PubMed ID: 29789590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise control of SCRaMbLE in synthetic haploid and diploid yeast.
    Jia B; Wu Y; Li BZ; Mitchell LA; Liu H; Pan S; Wang J; Zhang HR; Jia N; Li B; Shen M; Xie ZX; Liu D; Cao YX; Li X; Zhou X; Qi H; Boeke JD; Yuan YJ
    Nat Commun; 2018 May; 9(1):1933. PubMed ID: 29789567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating betulinic acid production in Saccharomyces cerevisiae by managing the intracellular supplies of the co-factor NADPH and oxygen.
    Li J; Zhang Y
    J Biosci Bioeng; 2015 Jan; 119(1):77-81. PubMed ID: 25043336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces cerevisiae.
    Wu J; Niu Y; Bakur A; Li H; Chen Q
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28653998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial Metabolic Engineering for Improving Betulinic Acid Biosynthesis in
    Tang M; Xu X; Liu Y; Li J; Du G; Lv X; Liu L
    ACS Synth Biol; 2024 Jun; 13(6):1798-1808. PubMed ID: 38748665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Construction of cell factories for production of lupeol in Saccharomyces cerevisiae].
    Lin TT; Wang D; Dai ZB; Zhang XL; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2016 Mar; 41(6):1008-1015. PubMed ID: 28875662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building better yeast.
    Nat Commun; 2018 May; 9(1):1939. PubMed ID: 29789549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
    Dymond JS; Richardson SM; Coombes CE; Babatz T; Muller H; Annaluru N; Blake WJ; Schwerzmann JW; Dai J; Lindstrom DL; Boeke AC; Gottschling DE; Chandrasegaran S; Bader JS; Boeke JD
    Nature; 2011 Sep; 477(7365):471-6. PubMed ID: 21918511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of betulinic acid biosynthesis in yeast employing multiple strategies.
    Zhou C; Li J; Li C; Zhang Y
    BMC Biotechnol; 2016 Aug; 16(1):59. PubMed ID: 27534392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal Rearrangements of Synthetic Yeast by SCRaMbLE.
    Luo Z; Jiang S; Dai J
    Methods Mol Biol; 2021; 2196():153-165. PubMed ID: 32889719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast.
    Hochrein L; Mitchell LA; Schulz K; Messerschmidt K; Mueller-Roeber B
    Nat Commun; 2018 May; 9(1):1931. PubMed ID: 29789561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.