These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32054862)

  • 21. FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast.
    Ishigami M; Nakagawa Y; Hayakawa M; Iimura Y
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):660-6. PubMed ID: 16556982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling.
    Maršíková J; Wilkinson D; Hlaváček O; Gilfillan GD; Mizeranschi A; Hughes T; Begany M; Rešetárová S; Váchová L; Palková Z
    BMC Genomics; 2017 Oct; 18(1):814. PubMed ID: 29061122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of FLO11 in Saccharomyces cerevisiae biofilm development in a laboratory based flow-cell system.
    Purevdorj-Gage B; Orr ME; Stoodley P; Sheehan KB; Hyman LE
    FEMS Yeast Res; 2007 May; 7(3):372-9. PubMed ID: 17233763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The administration of L-cysteine and L-arginine inhibits biofilm formation in wild-type biofilm-forming yeast by modulating FLO11 gene expression.
    Zara G; Bou Zeidan M; Fancello F; Sanna ML; Mannazzu I; Budroni M; Zara S
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7675-7685. PubMed ID: 31300852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell Distribution within Yeast Colonies and Colony Biofilms: How Structure Develops.
    Plocek V; Váchová L; Šťovíček V; Palková Z
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FLO11 expression and lipid biosynthesis are required for air-liquid biofilm formation in a Saccharomyces cerevisiae flor strain.
    Zara G; Goffrini P; Lodi T; Zara S; Mannazzu I; Budroni M
    FEMS Yeast Res; 2012 Nov; 12(7):864-6. PubMed ID: 22805178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Saccharomyces cerevisiae--a model to uncover molecular mechanisms for yeast biofilm biology.
    Bojsen RK; Andersen KS; Regenberg B
    FEMS Immunol Med Microbiol; 2012 Jul; 65(2):169-82. PubMed ID: 22332975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Air-liquid biofilm formation is dependent on ammonium depletion in a Saccharomyces cerevisiae flor strain.
    Zara G; Budroni M; Mannazzu I; Zara S
    Yeast; 2011 Dec; 28(12):809-14. PubMed ID: 21972103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.
    Lin X; Yu AQ; Zhang CY; Pi L; Bai XW; Xiao DG
    Microb Cell Fact; 2017 Nov; 16(1):194. PubMed ID: 29121937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations.
    Bojsen R; Regenberg B; Gresham D; Folkesson A
    Sci Rep; 2016 Feb; 6():21874. PubMed ID: 26903175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Xylose Metabolism by a
    Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Opi1p transcription factor affects expression of FLO11, mat formation, and invasive growth in Saccharomyces cerevisiae.
    Reynolds TB
    Eukaryot Cell; 2006 Aug; 5(8):1266-75. PubMed ID: 16896211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities.
    Traven A; Jänicke A; Harrison P; Swaminathan A; Seemann T; Beilharz TH
    PLoS One; 2012; 7(9):e46243. PubMed ID: 23029448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recruitment of Tup1p and Cti6p regulates heme-deficient expression of Aft1p target genes.
    Crisp RJ; Adkins EM; Kimmel E; Kaplan J
    EMBO J; 2006 Feb; 25(3):512-21. PubMed ID: 16437160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GTS1 induction causes derepression of Tup1-Cyc8-repressing genes and chromatin remodeling through the interaction of Gts1p with Cyc8p.
    Sanada M; Kuroda K; Ueda M
    Biosci Biotechnol Biochem; 2011; 75(4):740-7. PubMed ID: 21512249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of mutations synthetic-lethal to prohibitin 2 null mutants of Saccharomyces cerevisiae.
    Liu F; Jamieson DJ
    Antonie Van Leeuwenhoek; 2006 Feb; 89(2):281-92. PubMed ID: 16710639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenetic Transcriptional Memory of
    Sood V; Cajigas I; D'Urso A; Light WH; Brickner JH
    Genetics; 2017 Aug; 206(4):1895-1907. PubMed ID: 28607146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast.
    Rodriguez ME; Orozco H; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2014 Sep; 14(6):845-57. PubMed ID: 24920206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation in pH gradients and FLO11 expression in mat biofilms from environmental isolates of the yeast Saccharomyces cerevisiae.
    Forehand AL; Myagmarsuren D; Chen Z; Murphy HA
    Microbiologyopen; 2022 Apr; 11(2):e1277. PubMed ID: 35478280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.