These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 32054863)
1. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Zhang Z; He L; Zhu C; Qian Y; Wen L; Jiang L Nat Commun; 2020 Feb; 11(1):875. PubMed ID: 32054863 [TBL] [Abstract][Full Text] [Related]
2. Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. Bian G; Pan N; Luan Z; Sui X; Fan W; Xia Y; Sui K; Jiang L Angew Chem Int Ed Engl; 2021 Sep; 60(37):20294-20300. PubMed ID: 34265152 [TBL] [Abstract][Full Text] [Related]
3. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Zhang Z; Yang S; Zhang P; Zhang J; Chen G; Feng X Nat Commun; 2019 Jul; 10(1):2920. PubMed ID: 31266937 [TBL] [Abstract][Full Text] [Related]
4. An Ionic Diode Covalent Organic Framework Membrane for Efficient Osmotic Energy Conversion. Cao L; Chen IC; Liu X; Li Z; Zhou Z; Lai Z ACS Nano; 2022 Nov; 16(11):18910-18920. PubMed ID: 36283039 [TBL] [Abstract][Full Text] [Related]
5. Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion. Ding L; Xiao D; Zhao Z; Wei Y; Xue J; Wang H Adv Sci (Weinh); 2022 Sep; 9(25):e2202869. PubMed ID: 35780505 [TBL] [Abstract][Full Text] [Related]
6. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels. Lin YC; Chen HH; Chu CW; Yeh LH Nano Lett; 2024 Sep; 24(37):11756-11762. PubMed ID: 39236070 [TBL] [Abstract][Full Text] [Related]
7. Oxidation promoted osmotic energy conversion in black phosphorus membranes. Zhang Z; Zhang P; Yang S; Zhang T; Löffler M; Shi H; Lohe MR; Feng X Proc Natl Acad Sci U S A; 2020 Jun; 117(25):13959-13966. PubMed ID: 32513735 [TBL] [Abstract][Full Text] [Related]
8. Dual-network fiber-hydrogel membrane for osmotic energy harvesting. Cao L; Wu H Front Chem; 2024; 12():1401854. PubMed ID: 38783897 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired Ti Ding L; Zheng M; Xiao D; Zhao Z; Xue J; Zhang S; Caro J; Wang H Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202206152. PubMed ID: 35768337 [TBL] [Abstract][Full Text] [Related]
10. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure. Yang ZJ; Yeh LH; Peng YH; Chuang YP; Wu KC Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202408375. PubMed ID: 38847272 [TBL] [Abstract][Full Text] [Related]
11. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206 [TBL] [Abstract][Full Text] [Related]
13. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation. Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776 [TBL] [Abstract][Full Text] [Related]
14. Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3D Interconnected Nanopores. Chen W; Wang Q; Chen J; Zhang Q; Zhao X; Qian Y; Zhu C; Yang L; Zhao Y; Kong XY; Lu B; Jiang L; Wen L Nano Lett; 2020 Aug; 20(8):5705-5713. PubMed ID: 32692569 [TBL] [Abstract][Full Text] [Related]
15. Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. Zhou S; Xie L; Zhang L; Wen L; Tang J; Zeng J; Liu T; Peng D; Yan M; Qiu B; Liang Q; Liang K; Jiang L; Kong B ACS Appl Mater Interfaces; 2021 Feb; 13(7):8782-8793. PubMed ID: 33560109 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting. Xin W; Xiao H; Kong XY; Chen J; Yang L; Niu B; Qian Y; Teng Y; Jiang L; Wen L ACS Nano; 2020 Aug; 14(8):9701-9710. PubMed ID: 32687698 [TBL] [Abstract][Full Text] [Related]
17. Oppositely Charged Ti Ding L; Xiao D; Lu Z; Deng J; Wei Y; Caro J; Wang H Angew Chem Int Ed Engl; 2020 May; 59(22):8720-8726. PubMed ID: 31950586 [TBL] [Abstract][Full Text] [Related]
18. Mono-component bacterial cellulose heterogeneous membrane mediated by ionic liquids for osmotic energy harvesting. Zhang X; Huang H; Chen S; Xu Y; Xu F Int J Biol Macromol; 2024 Feb; 258(Pt 2):128984. PubMed ID: 38151089 [TBL] [Abstract][Full Text] [Related]
19. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating. Nekoubin N; Sadeghi A; Chakraborty S Langmuir; 2024 May; 40(19):10171-10183. PubMed ID: 38698764 [TBL] [Abstract][Full Text] [Related]
20. Heterogeneous CNF/MoO Zheng M; Liu P; Yan P; Zhou T; Lin X; Li X; Wen L; Xu Q Mater Horiz; 2024 Jul; 11(14):3375-3385. PubMed ID: 38686603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]