BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32054874)

  • 1. Modeling membrane nanotube morphology: the role of heterogeneity in composition and material properties.
    Alimohamadi H; Ovryn B; Rangamani P
    Sci Rep; 2020 Feb; 10(1):2527. PubMed ID: 32054874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane nanotube pearling restricted by confined polymers.
    Yan Z; Li S; Luo Z; Xu Y; Yue T
    Soft Matter; 2018 Nov; 14(46):9383-9392. PubMed ID: 30418454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular Blebs and Membrane Invaginations Are Coupled through Membrane Tension Buffering.
    Lavi I; Goudarzi M; Raz E; Gov NS; Voituriez R; Sens P
    Biophys J; 2019 Oct; 117(8):1485-1495. PubMed ID: 31445681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent quantification of size and lamellarity of membrane nanotubes.
    Baroji YF; Oddershede LB; Seyed Reihani SN; Bendix PM
    Eur Biophys J; 2014 Dec; 43(12):595-602. PubMed ID: 25256431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bleb Nucleation through Membrane Peeling.
    Alert R; Casademunt J
    Phys Rev Lett; 2016 Feb; 116(6):068101. PubMed ID: 26919015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How curvature-generating proteins build scaffolds on membrane nanotubes.
    Simunovic M; Evergren E; Golushko I; Prévost C; Renard HF; Johannes L; McMahon HT; Lorman V; Voth GA; Bassereau P
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11226-11231. PubMed ID: 27655892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spicules and the effect of rigid rods on enclosing membrane tubes.
    Daniels DR; Turner MS
    Phys Rev Lett; 2005 Dec; 95(23):238101. PubMed ID: 16384350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for Nanomanipulation and Mechanical Characterization.
    Dols-Perez A; Marin V; Amador GJ; Kieffer R; Tam D; Aubin-Tam ME
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33620-33627. PubMed ID: 31448892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of nonequilibrium membrane bud formation.
    Sens P
    Phys Rev Lett; 2004 Sep; 93(10):108103. PubMed ID: 15447455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn.
    Gimsa U; Iglic A; Fiedler S; Zwanzig M; Kralj-Iglic V; Jonas L; Gimsa J
    Mol Membr Biol; 2007; 24(3):243-55. PubMed ID: 17520481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inception Mechanisms of Tunneling Nanotubes.
    Drab M; Stopar D; Kralj-Iglič V; Iglič A
    Cells; 2019 Jun; 8(6):. PubMed ID: 31234435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics of nonplanar membranes with force-dipole activity.
    Lomholt MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061913. PubMed ID: 16906870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional analysis of tunneling nanotubes (TnTs) using gCW STED and gconfocal approaches.
    Bénard M; Schapman D; Lebon A; Monterroso B; Bellenger M; Le Foll F; Pasquier J; Vaudry H; Vaudry D; Galas L
    Biol Cell; 2015 Nov; 107(11):419-25. PubMed ID: 26094971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanics and dynamics of lysozyme immobilisation inside nanotubes.
    Thamwattana N; Sarapat P; Chan Y
    J Phys Condens Matter; 2019 Jul; 31(26):265901. PubMed ID: 30917355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processivity and collectivity of biomolecular motors extracting membrane nanotubes.
    Fontenele Araujo F; Storm C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):010901. PubMed ID: 23005360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational analysis of the insertion of carbon nanotubes into cellular membranes.
    Höfinger S; Melle-Franco M; Gallo T; Cantelli A; Calvaresi M; Gomes JA; Zerbetto F
    Biomaterials; 2011 Oct; 32(29):7079-85. PubMed ID: 21723603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of surfactant-like peptide based nanostructures.
    Colherinhas G; Fileti E
    J Phys Chem B; 2014 Oct; 118(42):12215-22. PubMed ID: 25264942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane nanotubes transform into double-membrane sheets at condensate droplets.
    Zhao Z; Satarifard V; Lipowsky R; Dimova R
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2321579121. PubMed ID: 38900795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of the Formation, Interaction, and Evolution of Membrane Tubular Structures.
    Li S; Yan Z; Luo Z; Xu Y; Huang F; Zhang X; Yi X; Yue T
    Biophys J; 2019 Mar; 116(5):884-892. PubMed ID: 30795870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-targeted self-assembling cyclic peptide nanotubes.
    Rodríguez-Vázquez N; Ozores HL; Guerra A; González-Freire E; Fuertes A; Panciera M; Priegue JM; Outeiral J; Montenegro J; Garcia-Fandino R; Amorin M; Granja JR
    Curr Top Med Chem; 2014; 14(23):2647-61. PubMed ID: 25515753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.