BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 32054884)

  • 1. Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities.
    Kothari R; Yang Z; Kanan C; Bailey R; Pelz JB; Diaz GJ
    Sci Rep; 2020 Feb; 10(1):2539. PubMed ID: 32054884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of the vestibulo-ocular reflex by prior eye movements.
    Das VE; Dell'Osso LF; Leigh RJ
    J Neurophysiol; 1999 Jun; 81(6):2884-92. PubMed ID: 10368405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1614-26. PubMed ID: 10980031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human smooth pursuit gain is modulated by a signal related to gaze velocity.
    Bayer O; Eggert T; Glasauer S; Büttner U
    Neuroreport; 2008 Aug; 19(12):1217-20. PubMed ID: 18628668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye-head coordination and the variation of eye-movement accuracy with orbital eccentricity.
    Stahl JS
    Exp Brain Res; 2001 Jan; 136(2):200-10. PubMed ID: 11206282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of superior colliculus in adaptive eye-head coordination during gaze shifts.
    Constantin AG; Wang H; Crawford JD
    J Neurophysiol; 2004 Oct; 92(4):2168-84. PubMed ID: 15190087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the cerebellar flocculus to gaze control during active head movements.
    Belton T; McCrea RA
    J Neurophysiol; 1999 Jun; 81(6):3105-9. PubMed ID: 10368427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alignment maximization method for the kinematics of the eye and eye-head fixations.
    Chen B; Fielding J; Chung H
    Vision Res; 2019 May; 158():58-71. PubMed ID: 30796996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eye-head coordination in labyrinthine-defective humans.
    Maurer C; Mergner T; Becker W; Jürgens R
    Exp Brain Res; 1998 Oct; 122(3):260-74. PubMed ID: 9808299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target position relative to the head is essential for predicting head movement during head-free gaze pursuit.
    C Pallus A; G Freedman E
    Exp Brain Res; 2016 Aug; 234(8):2107-21. PubMed ID: 26979437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
    Roy JE; Cullen KE
    J Neurophysiol; 2003 Jul; 90(1):271-90. PubMed ID: 12843311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Head-eye interactions during vertical gaze shifts made by rhesus monkeys.
    Freedman EG
    Exp Brain Res; 2005 Dec; 167(4):557-70. PubMed ID: 16132972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex.
    Constantin AG; Wang H; Monteon JA; Martinez-Trujillo JC; Crawford JD
    Neuroscience; 2009 Dec; 164(3):1284-302. PubMed ID: 19733631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid horizontal gaze movement in the monkey.
    Phillips JO; Ling L; Fuchs AF; Siebold C; Plorde JJ
    J Neurophysiol; 1995 Apr; 73(4):1632-52. PubMed ID: 7643172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment.
    Singh T; Perry CM; Herter TM
    J Neuroeng Rehabil; 2016 Jan; 13():10. PubMed ID: 26812907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short- and long-term consequences of canal plugging on gaze shifts in the rhesus monkey. I. Effects on gaze stabilization.
    Newlands SD; Ling L; Phillips JO; Siebold C; Duckert L; Fuchs AF
    J Neurophysiol; 1999 May; 81(5):2119-30. PubMed ID: 10322053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ACE-DNV: Automatic classification of gaze events in dynamic natural viewing.
    Nejad A; de Haan GA; Heutink J; Cornelissen FW
    Behav Res Methods; 2024 Apr; 56(4):3300-3314. PubMed ID: 38448726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different gaze strategies during eye versus hand tracking of a moving target.
    Danion FR; Flanagan JR
    Sci Rep; 2018 Jul; 8(1):10059. PubMed ID: 29968806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze control in microgravity. 1. Saccades, pursuit, eye-head coordination.
    André-Deshays C; Israël I; Charade O; Berthoz A; Popov K; Lipshits M
    J Vestib Res; 1993; 3(3):331-43. PubMed ID: 8275267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to monitor eye and head tracking movements in college baseball players.
    Fogt NF; Zimmerman AB
    Optom Vis Sci; 2014 Feb; 91(2):200-11. PubMed ID: 24394952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.