These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 32054964)
1. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Chen J; Yang J; Ma L; Li J; Shahzad N; Kim CK Sci Rep; 2020 Feb; 10(1):2611. PubMed ID: 32054964 [TBL] [Abstract][Full Text] [Related]
2. Computational Study of Lee CY; Sharma A; Semenya J; Anamoah C; Chapman KN; Barone V Antioxidants (Basel); 2020 Feb; 9(3):. PubMed ID: 32106494 [TBL] [Abstract][Full Text] [Related]
3. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. Biela M; Kleinová A; Klein E Phytochemistry; 2022 Aug; 200():113254. PubMed ID: 35623472 [TBL] [Abstract][Full Text] [Related]
4. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action. Klein E; Lukes V J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, DFT Calculations, and In Vitro Antioxidant Study on Novel Carba-Analogs of Vitamin E. Baj A; Cedrowski J; Olchowik-Grabarek E; Ratkiewicz A; Witkowski S Antioxidants (Basel); 2019 Nov; 8(12):. PubMed ID: 31779214 [TBL] [Abstract][Full Text] [Related]
6. Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study. Menacer R; Rekkab S; Kabouche Z J Mol Model; 2022 Aug; 28(8):240. PubMed ID: 35913682 [TBL] [Abstract][Full Text] [Related]
7. Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Wang G; Xue Y; An L; Zheng Y; Dou Y; Zhang L; Liu Y Food Chem; 2015 Mar; 171():89-97. PubMed ID: 25308647 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant activity of erlotinib and gefitinib: theoretical and experimental insights. K P SH; Babu TD; C M P; Joshy G; Mathew D; Thayyil MS Free Radic Res; 2022 Feb; 56(2):196-208. PubMed ID: 35514158 [TBL] [Abstract][Full Text] [Related]
9. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. Litwinienko G; Ingold KU J Org Chem; 2004 Sep; 69(18):5888-96. PubMed ID: 15373474 [TBL] [Abstract][Full Text] [Related]
10. Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: thermodynamics of O-H and N-H bond cleavage. Alisi IO; Uzairu A; Abechi SE Heliyon; 2020 Mar; 6(3):e03683. PubMed ID: 32258501 [TBL] [Abstract][Full Text] [Related]
11. Theoretical investigations on the antioxidant potential of a non-phenolic compound thymoquinone: a DFT approach. Hossen J; Ali MA; Reza S J Mol Model; 2021 May; 27(6):173. PubMed ID: 34014420 [TBL] [Abstract][Full Text] [Related]
12. Radical Scavenging Activity of Puerarin: A Theoretical Study. Zhou H; Li X; Shang Y; Chen K Antioxidants (Basel); 2019 Nov; 8(12):. PubMed ID: 31779233 [TBL] [Abstract][Full Text] [Related]
13. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. Chen Y; Xiao H; Zheng J; Liang G PLoS One; 2015; 10(3):e0121276. PubMed ID: 25803685 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Mittal A; Vashistha VK; Das DK Free Radic Res; 2022; 56(5-6):378-397. PubMed ID: 36063087 [TBL] [Abstract][Full Text] [Related]
15. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid. Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059 [TBL] [Abstract][Full Text] [Related]
16. Substituent Effects on the Radical Scavenging Activity of Isoflavonoid. Zheng YZ; Deng G; Guo R; Chen DF; Fu ZM Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669260 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids. Marković S; Tošović J Food Chem; 2016 Nov; 210():585-92. PubMed ID: 27211685 [TBL] [Abstract][Full Text] [Related]
18. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid. Shameera Ahamed TK; Rajan VK; Sabira K; Muraleedharan K Comput Biol Chem; 2019 Jun; 80():66-78. PubMed ID: 30928870 [TBL] [Abstract][Full Text] [Related]
19. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis. Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM Phytochemistry; 2018 Dec; 156():184-192. PubMed ID: 30312934 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study on the antioxidant properties of 2'-hydroxychalcones: H-atom vs. electron transfer mechanism. Xue Y; Zheng Y; Zhang L; Wu W; Yu D; Liu Y J Mol Model; 2013 Sep; 19(9):3851-62. PubMed ID: 23801254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]