These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32055237)
1. Postmagmatic Tectonic Evolution of the Outer Izu-Bonin Forearc Revealed by Sediment Basin Structure and Vein Microstructure Analysis: Implications for a 15 Ma Hiatus Between Pacific Plate Subduction Initiation and Forearc Extension. Kurz W; Micheuz P; Christeson GL; Reagan M; Shervais JW; Kutterolf S; Robertson A; Krenn K; Michibayashi K; Quandt D Geochem Geophys Geosyst; 2019 Dec; 20(12):5867-5895. PubMed ID: 32055237 [TBL] [Abstract][Full Text] [Related]
2. Geochemistry and Microtextures of Vein Calcites Pervading the Izu-Bonin Forearc and Rear Arc Crust: New Insights From IODP Expeditions 352 and 351. Quandt D; Micheuz P; Kurz W; Bernasconi SM; Hippler D; Krenn K; Hauzenberger CA Geochem Geophys Geosyst; 2020 Feb; 21(2):e2019GC008745. PubMed ID: 32714098 [TBL] [Abstract][Full Text] [Related]
3. Post-magmatic fracturing, fluid flow, and vein mineralization in supra-subduction zones: a comparative study on vein calcites from the Troodos ophiolite and the Izu-Bonin forearc and rear arc. Quandt D; Kurz W; Micheuz P Int J Earth Sci; 2021; 110(2):627-649. PubMed ID: 33814973 [TBL] [Abstract][Full Text] [Related]
4. Arc and forearc rifting in the Tyrrhenian subduction system. Corradino M; Balazs A; Faccenna C; Pepe F Sci Rep; 2022 Mar; 12(1):4728. PubMed ID: 35304876 [TBL] [Abstract][Full Text] [Related]
5. Magmatic Response to Subduction Initiation: Part 1. Fore-arc Basalts of the Izu-Bonin Arc From IODP Expedition 352. Shervais JW; Reagan M; Haugen E; Almeev RR; Pearce JA; Prytulak J; Ryan JG; Whattam SA; Godard M; Chapman T; Li H; Kurz W; Nelson WR; Heaton D; Kirchenbaur M; Shimizu K; Sakuyama T; Li Y; Vetter SK Geochem Geophys Geosyst; 2019 Jan; 20(1):314-338. PubMed ID: 30853858 [TBL] [Abstract][Full Text] [Related]
6. Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development. Li H; Arculus RJ; Ishizuka O; Hickey-Vargas R; Yogodzinski GM; McCarthy A; Kusano Y; Brandl PA; Savov IP; Tepley FJ; Sun W Nat Commun; 2021 Mar; 12(1):1723. PubMed ID: 33741949 [TBL] [Abstract][Full Text] [Related]
7. Quaternary E-W Extension Uplifts Kythira Island and Segments the Hellenic Arc. de Gelder G; Fernández-Blanco D; Öğretmen N; Liakopoulos S; Papanastassiou D; Faranda C; Armijo R; Lacassin R Tectonics; 2022 Oct; 41(10):e2022TC007231. PubMed ID: 36636336 [TBL] [Abstract][Full Text] [Related]
8. Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites. Parkinson IJ; Hawkesworth CJ; Cohen AS Science; 1998 Sep; 281(5385):2011-3. PubMed ID: 9748156 [TBL] [Abstract][Full Text] [Related]
9. Relict subduction initiation along a passive margin in the northwest Indian Ocean. Pandey DK; Pandey A; Whattam SA Nat Commun; 2019 May; 10(1):2248. PubMed ID: 31113947 [TBL] [Abstract][Full Text] [Related]
10. Geometry and Evolution of the Cangdong Sag in the Bohai Bay Basin, China: Implications for Subduction of the Pacific Plate. Luo L; Qi J; Li H; Dong Y; Zhang S; Zhang X; Yu X; Luo L Sci Rep; 2017 Nov; 7(1):15393. PubMed ID: 29133843 [TBL] [Abstract][Full Text] [Related]
11. Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces. Maunder B; Prytulak J; Goes S; Reagan M Nat Commun; 2020 Apr; 11(1):1874. PubMed ID: 32312969 [TBL] [Abstract][Full Text] [Related]
12. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block. Zuo X; Chan LS; Gao JF PLoS One; 2017; 12(2):e0171536. PubMed ID: 28182640 [TBL] [Abstract][Full Text] [Related]
13. Potential role of strike-slip faults in opening up the South China Sea. Huang CY; Wang P; Yu M; You CF; Liu CS; Zhao X; Shao L; Zhong G; Yumul GP Natl Sci Rev; 2019 Oct; 6(5):891-901. PubMed ID: 34691950 [TBL] [Abstract][Full Text] [Related]
14. Strontium isotope proxy of sedimentological records reveals uplift and erosion in the Southeastern Neo-Tethys ocean during the late Cretaceous. Navidtalab A; Mehrabi H; Shafaii Moghadam H; Rahimpour-Bonab H Sci Rep; 2024 Feb; 14(1):3499. PubMed ID: 38347075 [TBL] [Abstract][Full Text] [Related]
15. Biogeographic-tectonic calibration of 14 nodes in a butterfly timetree. Heads M; Grehan JR; Nielsen J; Patrick B Cladistics; 2023 Aug; 39(4):293-336. PubMed ID: 37278328 [TBL] [Abstract][Full Text] [Related]
16. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344). Brandstätter J; Kurz W; Rogowitz A Tectonics; 2017 Aug; 36(8):1562-1579. PubMed ID: 29081570 [TBL] [Abstract][Full Text] [Related]
17. Tectono-stratigraphic basin evolution in the Tehuacán-Mixteca highlands, south western México. Medina-Sánchez J; McLaren SJ; Ortega-Ramírez J; Valiente-Banuet A Heliyon; 2020 Mar; 6(3):e03584. PubMed ID: 32215328 [TBL] [Abstract][Full Text] [Related]
18. Subduction zone forearc serpentinites as incubators for deep microbial life. Plümper O; King HE; Geisler T; Liu Y; Pabst S; Savov IP; Rost D; Zack T Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4324-4329. PubMed ID: 28396389 [TBL] [Abstract][Full Text] [Related]