BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32055252)

  • 1. Finding all maximal perfect haplotype blocks in linear time.
    Alanko J; Bannai H; Cazaux B; Peterlongo P; Stoye J
    Algorithms Mol Biol; 2020; 15():2. PubMed ID: 32055252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform.
    Baier U; Beller T; Ohlebusch E
    Bioinformatics; 2016 Feb; 32(4):497-504. PubMed ID: 26504144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT).
    Durbin R
    Bioinformatics; 2014 May; 30(9):1266-72. PubMed ID: 24413527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient maximal repeat finding using the burrows-wheeler transform and wavelet tree.
    Külekci MO; Vitter JS; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):421-9. PubMed ID: 21968959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal Perfect Haplotype Blocks with Wildcards.
    Williams L; Mumey B
    iScience; 2020 Jun; 23(6):101149. PubMed ID: 32446220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HaploBlocks: Efficient Detection of Positive Selection in Large Population Genomic Datasets.
    Kirsch-Gerweck B; Bohnenkämper L; Henrichs MT; Alanko JN; Bannai H; Cazaux B; Peterlongo P; Burger J; Stoye J; Diekmann Y
    Mol Biol Evol; 2023 Mar; 40(3):. PubMed ID: 36790822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved encoding of genetic variation in a Burrows-Wheeler transform.
    Büchler T; Ohlebusch E
    Bioinformatics; 2020 Mar; 36(5):1413-1419. PubMed ID: 31613311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. d-PBWT: dynamic positional Burrows-Wheeler transform.
    Sanaullah A; Zhi D; Zhang S
    Bioinformatics; 2021 Aug; 37(16):2390-2397. PubMed ID: 33624749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-allelic positional Burrows-Wheeler transform.
    Naseri A; Zhi D; Zhang S
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):279. PubMed ID: 31167638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting parallelization in positional Burrows-Wheeler transform (PBWT) algorithms for efficient haplotype matching and compression.
    Wertenbroek R; Xenarios I; Thoma Y; Delaneau O
    Bioinform Adv; 2023; 3(1):vbad021. PubMed ID: 36908398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient haplotype matching between a query and a panel for genealogical search.
    Naseri A; Holzhauser E; Zhi D; Zhang S
    Bioinformatics; 2019 Jul; 35(14):i233-i241. PubMed ID: 31510689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A space-efficient construction of the Burrows-Wheeler transform for genomic data.
    Lippert RA; Mobarry CM; Walenz BP
    J Comput Biol; 2005 Sep; 12(7):943-51. PubMed ID: 16201914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haplotyping as perfect phylogeny: a direct approach.
    Bafna V; Gusfield D; Lancia G; Yooseph S
    J Comput Biol; 2003; 10(3-4):323-40. PubMed ID: 12935331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloud computing-based TagSNP selection algorithm for human genome data.
    Hung CL; Chen WP; Hua GJ; Zheng H; Tsai SJ; Lin YL
    Int J Mol Sci; 2015 Jan; 16(1):1096-110. PubMed ID: 25569088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A graph extension of the positional Burrows-Wheeler transform and its applications.
    Novak AM; Garrison E; Paten B
    Algorithms Mol Biol; 2017; 12():18. PubMed ID: 28702075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient reconstruction of haplotype structure via perfect phylogeny.
    Eskin E; Halperin E; Karp RM
    J Bioinform Comput Biol; 2003 Apr; 1(1):1-20. PubMed ID: 15290779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An MDL method for finding haplotype blocks and for estimating the strength of haplotype block boundaries.
    Koivisto M; Perola M; Varilo T; Hennah W; Ekelund J; Lukk M; Peltonen L; Ukkonen E; Mannila H
    Pac Symp Biocomput; 2003; ():502-13. PubMed ID: 12603053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform.
    Cox AJ; Bauer MJ; Jakobi T; Rosone G
    Bioinformatics; 2012 Jun; 28(11):1415-9. PubMed ID: 22556365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel and Space-Efficient Construction of Burrows-Wheeler Transform and Suffix Array for Big Genome Data.
    Liu Y; Hankeln T; Schmidt B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):592-8. PubMed ID: 27295644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. htSNPer1.0: software for haplotype block partition and htSNPs selection.
    Ding K; Zhang J; Zhou K; Shen Y; Zhang X
    BMC Bioinformatics; 2005 Mar; 6():38. PubMed ID: 15740612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.