These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32055320)

  • 1. Chemical communication in spatially organized protocell colonies and protocell/living cell micro-arrays.
    Wang X; Tian L; Du H; Li M; Mu W; Drinkwater BW; Han X; Mann S
    Chem Sci; 2019 Nov; 10(41):9446-9453. PubMed ID: 32055320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Information Exchange in Organized Protocells and Natural Cell Assemblies with Controllable Spatial Positions.
    Wang X; Tian L; Ren Y; Zhao Z; Du H; Zhang Z; Drinkwater BW; Mann S; Han X
    Small; 2020 Jul; 16(27):e1906394. PubMed ID: 32105404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Communication and Protocell-Matrix Dynamics in Segregated Colloidosome Micro-Colonies.
    Taylor H; Gao N; Mann S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202300932. PubMed ID: 37083182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed magnetic manipulation of vesicles into spatially coded prototissue architectures arrays.
    Li Q; Li S; Zhang X; Xu W; Han X
    Nat Commun; 2020 Jan; 11(1):232. PubMed ID: 31932592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical communication at the synthetic cell/living cell interface.
    Mukwaya V; Mann S; Dou H
    Commun Chem; 2021 Nov; 4(1):161. PubMed ID: 36697795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation.
    Arriaga LR; Datta SS; Kim SH; Amstad E; Kodger TE; Monroy F; Weitz DA
    Small; 2014 Mar; 10(5):950-6. PubMed ID: 24150883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium Spatiotemporal Sensing within Acoustically Patterned Two-Dimensional Protocell Arrays.
    Tian L; Li M; Liu J; Patil AJ; Drinkwater BW; Mann S
    ACS Cent Sci; 2018 Nov; 4(11):1551-1558. PubMed ID: 30555908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery.
    Staufer O; Antona S; Zhang D; Csatári J; Schröter M; Janiesch JW; Fabritz S; Berger I; Platzman I; Spatz JP
    Biomaterials; 2021 Jan; 264():120203. PubMed ID: 32987317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures.
    Bhatia T; Husen P; Brewer J; Bagatolli LA; Hansen PL; Ipsen JH; Mouritsen OG
    Biochim Biophys Acta; 2015 Dec; 1848(12):3175-80. PubMed ID: 26417657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial morphogen-mediated differentiation in synthetic protocells.
    Tian L; Li M; Patil AJ; Drinkwater BW; Mann S
    Nat Commun; 2019 Jul; 10(1):3321. PubMed ID: 31346180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superstructural ordering in self-sorting coacervate-based protocell networks.
    Mu W; Jia L; Zhou M; Wu J; Lin Y; Mann S; Qiao Y
    Nat Chem; 2024 Feb; 16(2):158-167. PubMed ID: 37932411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Triggered Cargo Loading and Division of DNA-Containing Giant Unilamellar Lipid Vesicles.
    Dreher Y; Jahnke K; Schröter M; Göpfrich K
    Nano Lett; 2021 Jul; 21(14):5952-5957. PubMed ID: 34251204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile and Programmable Capillary-Induced Assembly of Prototissues via Hanging Drop Arrays.
    Qi C; Ma X; Zhong J; Fang J; Huang Y; Deng X; Kong T; Liu Z
    ACS Nano; 2023 Sep; 17(17):16787-16797. PubMed ID: 37639562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Division and Regrowth of Phase-Separated Giant Unilamellar Vesicles*.
    Dreher Y; Jahnke K; Bobkova E; Spatz JP; Göpfrich K
    Angew Chem Int Ed Engl; 2021 May; 60(19):10661-10669. PubMed ID: 33355974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes.
    Tamba Y; Ohba S; Kubota M; Yoshioka H; Yoshioka H; Yamazaki M
    Biophys J; 2007 May; 92(9):3178-94. PubMed ID: 17293394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant Unilamellar Vesicle Microarrays for Cell Function Study.
    Zhu C; Li Q; Dong M; Han X
    Anal Chem; 2018 Dec; 90(24):14363-14367. PubMed ID: 30481002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic Vesicles with Designer Phospholipids Can Sense Environmental Redox Cues.
    Erguven H; Wang L; Gutierrez B; Beaven AH; Sodt AJ; Izgu EC
    JACS Au; 2024 May; 4(5):1841-1853. PubMed ID: 38818047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles.
    Shuma ML; Moghal MMR; Yamazaki M
    Biochemistry; 2020 May; 59(18):1780-1790. PubMed ID: 32285663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.