These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32055330)

  • 1. Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework.
    Pambudi FI; Anderson MW; Attfield MP
    Chem Sci; 2019 Nov; 10(41):9571-9575. PubMed ID: 32055330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epitaxial Growth of Lattice-Mismatched Core-Shell TiO2 @MoS2 for Enhanced Lithium-Ion Storage.
    Dai R; Zhang A; Pan Z; Al-Enizi AM; Elzatahry AA; Hu L; Zheng G
    Small; 2016 May; 12(20):2792-9. PubMed ID: 27062267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Synthesis of Hybrid Core-Shell Metal-Organic Frameworks.
    Yang X; Yuan S; Zou L; Drake H; Zhang Y; Qin J; Alsalme A; Zhou HC
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3927-3932. PubMed ID: 29451952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Single-Crystalline Core-Shell Metal-Organic Frameworks.
    Park J; Ha J; Moon HR
    J Vis Exp; 2023 Feb; (192):. PubMed ID: 36847385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal growth of the core and rotated epitaxial shell of a heterometallic metal-organic framework revealed with atomic force microscopy.
    Pambudi FI; Anderson MW; Attfield MP
    Faraday Discuss; 2021 Oct; 231(0):112-126. PubMed ID: 34190747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal growth mechanisms and morphological control of the prototypical metal-organic framework MOF-5 revealed by atomic force microscopy.
    Cubillas P; Anderson MW; Attfield MP
    Chemistry; 2012 Nov; 18(48):15406-15. PubMed ID: 23055448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Strategy for Engineering the Metal-Oxide@MOF Core@Shell Architecture and Its Applications in Cataluminescence Sensing.
    Huang X; Yan S; Deng D; Zhang L; Liu R; Lv Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3471-3480. PubMed ID: 33400483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twin-mediated epitaxial growth of highly lattice-mismatched Cu/Ag core-shell nanowires.
    Weng WL; Hsu CY; Lee JS; Fan HH; Liao CN
    Nanoscale; 2018 May; 10(21):9862-9866. PubMed ID: 29790560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic MOF-on-MOF Growth of Isostructural Multilayer Metal-Organic Framework Heterostructures.
    Gu Z; Zhang W; Pan T; Shen Y; Qin P; Zhang P; Li X; Liu L; Li L; Fu Y; Zhang W; Huo F
    Research (Wash D C); 2021; 2021():9854946. PubMed ID: 34877539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances of the core-shell MOFs in tumour therapy.
    Zeng Y; Xu G; Kong X; Ye G; Guo J; Lu C; Nezamzadeh-Ejhieh A; Shahnawaz Khan M; Liu J; Peng Y
    Int J Pharm; 2022 Nov; 627():122228. PubMed ID: 36162610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lattice mismatch and shell thickness on strain in core@shell nanocrystals.
    Gamler JTL; Leonardi A; Sang X; Koczkur KM; Unocic RR; Engel M; Skrabalak SE
    Nanoscale Adv; 2020 Mar; 2(3):1105-1114. PubMed ID: 36133036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tip-To-Middle Anisotropic MOF-On-MOF Growth with a Structural Adjustment.
    Lee G; Lee S; Oh S; Kim D; Oh M
    J Am Chem Soc; 2020 Feb; 142(6):3042-3049. PubMed ID: 31968935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanthanide-based heteroepitaxial core-shell nanostructures: compressive versus tensile strain asymmetry.
    Johnson NJ; van Veggel FC
    ACS Nano; 2014 Oct; 8(10):10517-27. PubMed ID: 25289882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-Independent Epitaxial Growth of the Metal-Organic Framework MOF-508a.
    Wilson M; Barrientos-Palomo SN; Stevens PC; Mitchell NL; Oswald G; Nagaraja CM; Badyal JPS
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4057-4065. PubMed ID: 29355298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a Core-Shell Design Approach for Constructing MOFs for CO
    He Y; Boone P; Lieber AR; Tong Z; Das P; Hornbostel KM; Wilmer CE; Rosi NL
    ACS Appl Mater Interfaces; 2023 May; 15(19):23337-23342. PubMed ID: 37141279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials discovery and crystal growth of zeolite A type zeolitic-imidazolate frameworks revealed by atomic force microscopy.
    Cubillas P; Anderson MW; Attfield MP
    Chemistry; 2013 Jun; 19(25):8236-43. PubMed ID: 23625869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atypical Hybrid Metal-Organic Frameworks (MOFs): A Combinative Process for MOF-on-MOF Growth, Etching, and Structure Transformation.
    Lee S; Oh S; Oh M
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1327-1333. PubMed ID: 31674087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unbalanced MOF-on-MOF growth for the production of a lopsided core-shell of MIL-88B@MIL-88A with mismatched cell parameters.
    Kim D; Lee G; Oh S; Oh M
    Chem Commun (Camb); 2018 Dec; 55(1):43-46. PubMed ID: 30488915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous Strain Relaxation in Core-Shell Nanowire Heterostructures via Simultaneous Coherent and Incoherent Growth.
    Lewis RB; Nicolai L; Küpers H; Ramsteiner M; Trampert A; Geelhaar L
    Nano Lett; 2017 Jan; 17(1):136-142. PubMed ID: 28001430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing optimal core-shell MOFs for direct air capture.
    Boone P; He Y; Lieber AR; Steckel JA; Rosi NL; Hornbostel KM; Wilmer CE
    Nanoscale; 2022 Nov; 14(43):16085-16096. PubMed ID: 36082903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.