These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 32055334)

  • 1. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites.
    Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W
    Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-driven water splitting enhancement on plasmonic metal-insulator-semiconductor hetero-nanostructures: unraveling the crucial role of interfacial engineering.
    Li C; Wang P; Li H; Wang M; Zhang J; Qi G; Jin Y
    Nanoscale; 2018 Aug; 10(29):14290-14297. PubMed ID: 30015344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Insights of Charge Transfer at Metal/Semiconductor Interfaces for Hot-Electron Generation Studied by Surface-Enhanced Raman Spectroscopy.
    Guan J; Wu S; Li L; Wang X; Ji W; Ozaki Y
    J Phys Chem Lett; 2022 Apr; 13(16):3571-3578. PubMed ID: 35426671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO
    Lee MG; Moon CW; Park H; Sohn W; Kang SB; Lee S; Choi KJ; Jang HW
    Small; 2017 Oct; 13(37):. PubMed ID: 28834195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts.
    Wang S; Gao Y; Miao S; Liu T; Mu L; Li R; Fan F; Li C
    J Am Chem Soc; 2017 Aug; 139(34):11771-11778. PubMed ID: 28777568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis.
    DuChene JS; Sweeny BC; Johnston-Peck AC; Su D; Stach EA; Wei WD
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7887-91. PubMed ID: 24920227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface Manipulation to Improve Plasmon-Coupled Photoelectrochemical Water Splitting on α-Fe
    Xu Z; Fan Z; Shi Z; Li M; Feng J; Pei L; Zhou C; Zhou J; Yang L; Li W; Xu G; Yan S; Zou Z
    ChemSusChem; 2018 Jan; 11(1):237-244. PubMed ID: 28940828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation.
    Zhang HX; Li Y; Li MY; Zhang H; Zhang J
    Nanoscale; 2018 Feb; 10(5):2236-2241. PubMed ID: 29340395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts.
    Zheng Z; Xie W; Huang B; Dai Y
    Chemistry; 2018 Dec; 24(69):18322-18333. PubMed ID: 30183119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.
    Zhang X; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-Dependent Bifunctional Plasmonic Photocatalysis in Au/Chalcopyrite Hybrid Nanostructures.
    An X; Kays JC; Lightcap IV; Ouyang T; Dennis AM; Reinhard BM
    ACS Nano; 2022 Apr; 16(4):6813-6824. PubMed ID: 35349253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Middle Road Less Taken: Electronic-Structure-Inspired Design of Hybrid Photocatalytic Platforms for Solar Fuel Generation.
    Cho J; Sheng A; Suwandaratne N; Wangoh L; Andrews JL; Zhang P; Piper LFJ; Watson DF; Banerjee S
    Acc Chem Res; 2019 Mar; 52(3):645-655. PubMed ID: 30543407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge Separation between Pt Co-catalysts and Plasmonic Au in Pt-Au/C
    Xie H; Li Z; Zhu J; Li H; Yang Q; Yang Y; Li C
    J Phys Chem Lett; 2022 Dec; 13(51):11982-11989. PubMed ID: 36535949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.