These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32055344)

  • 1. Valency engineering of monomeric enzymes for self-assembling biocatalytic hydrogels.
    Bitterwolf P; Gallus S; Peschke T; Mittmann E; Oelschlaeger C; Willenbacher N; Rabe KS; Niemeyer CM
    Chem Sci; 2019 Nov; 10(42):9752-9757. PubMed ID: 32055344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembling All-Enzyme Hydrogels for Flow Biocatalysis.
    Peschke T; Bitterwolf P; Gallus S; Hu Y; Oelschlaeger C; Willenbacher N; Rabe KS; Niemeyer CM
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):17028-17032. PubMed ID: 30380178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular Assembly of Interacting Enzymes Yields Highly-Active Nanoparticles for Flow Biocatalysis.
    Bitterwolf P; Zoheir AE; Hertel J; Kröll S; Rabe KS; Niemeyer CM
    Chemistry; 2022 Nov; 28(66):e202202157. PubMed ID: 36000795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Bi-Enzyme Self-Assembly Clusters Based on SpyCatcher/SpyTag for the Efficient Biosynthesis of (R)-Ethyl 2-hydroxy-4-phenylbutyrate.
    Wang J; Lu Y; Cheng P; Zhang C; Tang L; Du L; Li J; Ou Z
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocatalytic Foams from Microdroplet-Formulated Self-Assembling Enzymes.
    Hertel JS; Bitterwolf P; Kröll S; Winterhalter A; Weber AJ; Grösche M; Walkowsky LB; Heißler S; Schwotzer M; Wöll C; van de Kamp T; Zuber M; Baumbach T; Rabe KS; Niemeyer CM
    Adv Mater; 2023 Sep; 35(39):e2303952. PubMed ID: 37358068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imine Reductase Based All-Enzyme Hydrogel with Intrinsic Cofactor Regeneration for Flow Biocatalysis.
    Bitterwolf P; Ott F; Rabe KS; Niemeyer CM
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31731666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Display of Complex Enzymes by in Situ SpyCatcher-SpyTag Interaction.
    Gallus S; Peschke T; Paulsen M; Burgahn T; Niemeyer CM; Rabe KS
    Chembiochem; 2020 Aug; 21(15):2126-2131. PubMed ID: 32182402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Orthogonal Covalent Connector System for the Efficient Assembly of Enzyme Cascades on DNA Nanostructures.
    Kröll S; Rabe KS; Niemeyer CM
    Small; 2021 Dec; 17(51):e2105095. PubMed ID: 34825457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic cultivation and analysis of productive biofilms.
    Lemke P; Zoheir AE; Rabe KS; Niemeyer CM
    Biotechnol Bioeng; 2021 Oct; 118(10):3860-3870. PubMed ID: 34133021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Multimeric-Enzyme Nanoreactor for Robust and Efficient Biocatalysis.
    Yin L; Guo X; Liu L; Zhang Y; Feng Y
    ACS Biomater Sci Eng; 2018 Jun; 4(6):2095-2099. PubMed ID: 33435032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4-Hydroxystilbene.
    Peng M; Mittmann E; Wenger L; Hubbuch J; Engqvist MKM; Niemeyer CM; Rabe KS
    Chemistry; 2019 Dec; 25(70):15998-16001. PubMed ID: 31618489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-Continuous Flow Biocatalysis with Affinity Co-Immobilized Ketoreductase and Glucose Dehydrogenase.
    Plž M; Petrovičová T; Rebroš M
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System.
    Yanase T; Okuda-Shimazaki J; Asano R; Ikebukuro K; Sode K; Tsugawa W
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Phenolic Acid Decarboxylase-Based All-Enzyme Hydrogel for Flow Reactor Technology.
    Mittmann E; Gallus S; Bitterwolf P; Oelschlaeger C; Willenbacher N; Niemeyer CM; Rabe KS
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31757029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.
    Katzberg M; Skorupa-Parachin N; Gorwa-Grauslund MF; Bertau M
    Int J Mol Sci; 2010 Apr; 11(4):1735-58. PubMed ID: 20480039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Magnetosome-Based Platform for Flow Biocatalysis.
    Mittmann E; Mickoleit F; Maier DS; Stäbler SY; Klein MA; Niemeyer CM; Rabe KS; Schüler D
    ACS Appl Mater Interfaces; 2022 May; 14(19):22138-22150. PubMed ID: 35508355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of metal-organic framework-based multienzyme system for L-tert-leucine production.
    Wang R; Jia J; Liu X; Chen Y; Xu Q; Xue F
    Bioprocess Biosyst Eng; 2023 Sep; 46(9):1365-1373. PubMed ID: 37452834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.
    Gao X; Fang J; Xue B; Fu L; Li H
    Biomacromolecules; 2016 Sep; 17(9):2812-9. PubMed ID: 27477779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-immobilization of multiple enzymes by self-assembly and chemical crosslinking for cofactor regeneration and robust biocatalysis.
    Peng F; Ou XY; Guo ZW; Zeng YJ; Zong MH; Lou WY
    Int J Biol Macromol; 2020 Nov; 162():445-453. PubMed ID: 32562728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalysis in Continuous-Flow Microfluidic Reactors.
    Cardoso Marques MP; Lorente-Arevalo A; Bolivar JM
    Adv Biochem Eng Biotechnol; 2022; 179():211-246. PubMed ID: 33624135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.