These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 32055662)

  • 1. High resolution atomic force and Kelvin probe force microscopy image data of InAs(001) surface using frequency modulation method.
    Park YM; Park JS; Chung CH; Lee S
    Data Brief; 2020 Apr; 29():105177. PubMed ID: 32055662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode.
    Stan G; Namboodiri P
    Beilstein J Nanotechnol; 2021; 12():1115-1126. PubMed ID: 34703722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed digitization of the amplitude and frequency in open-loop sideband frequency-modulation Kelvin probe force microscopy.
    Stan G
    Nanotechnology; 2020 Jun; 31(38):385706. PubMed ID: 32516761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors.
    Sadewasser S; Jelinek P; Fang CK; Custance O; Yamada Y; Sugimoto Y; Abe M; Morita S
    Phys Rev Lett; 2009 Dec; 103(26):266103. PubMed ID: 20366324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping.
    Jakob DS; Li N; Zhou H; Xu XG
    Small; 2021 Sep; 17(37):e2102495. PubMed ID: 34310045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.
    Polak L; Wijngaarden RJ
    Ultramicroscopy; 2016 Dec; 171():158-165. PubMed ID: 27690346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of surface potential from Kelvin probe force microscopy images.
    Cohen G; Halpern E; Nanayakkara SU; Luther JM; Held C; Bennewitz R; Boag A; Rosenwaks Y
    Nanotechnology; 2013 Jul; 24(29):295702. PubMed ID: 23807266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes.
    Ma ZM; Mu JL; Tang J; Xue H; Zhang H; Xue CY; Liu J; Li YJ
    Nanoscale Res Lett; 2013 Dec; 8(1):532. PubMed ID: 24350866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the local contact potential difference of PTCDA on NaCl: a comparison of techniques.
    Burke SA; LeDue JM; Miyahara Y; Topple JM; Fostner S; Grütter P
    Nanotechnology; 2009 Jul; 20(26):264012. PubMed ID: 19509452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy.
    König T; Simon GH; Heinke L; Lichtenstein L; Heyde M
    Beilstein J Nanotechnol; 2011; 2():1-14. PubMed ID: 21977410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.
    Collins L; Ahmadi M; Wu T; Hu B; Kalinin SV; Jesse S
    ACS Nano; 2017 Sep; 11(9):8717-8729. PubMed ID: 28780850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties.
    Xie H; Zhang H; Hussain D; Meng X; Song J; Sun L
    Langmuir; 2017 Mar; 33(11):2725-2733. PubMed ID: 28263608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.
    Ma ZM; Kou L; Naitoh Y; Li YJ; Sugawara Y
    Nanotechnology; 2013 Jun; 24(22):225701. PubMed ID: 23633495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface potential imaging with atomic resolution by frequency-modulation Kelvin probe force microscopy without bias voltage feedback.
    Kou L; Ma Z; Li YJ; Naitoh Y; Komiyama M; Sugawara Y
    Nanotechnology; 2015 May; 26(19):195701. PubMed ID: 25895740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode.
    Moores B; Hane F; Eng L; Leonenko Z
    Ultramicroscopy; 2010 May; 110(6):708-11. PubMed ID: 20363077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
    Schulz F; Ritala J; Krejčí O; Seitsonen AP; Foster AS; Liljeroth P
    ACS Nano; 2018 Jun; 12(6):5274-5283. PubMed ID: 29800512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High spatial resolution Kelvin probe force microscopy with coaxial probes.
    Brown KA; Satzinger KJ; Westervelt RM
    Nanotechnology; 2012 Mar; 23(11):115703. PubMed ID: 22369870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.