These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 32055949)

  • 1. CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists.
    Kim H; Lee D; Cho WS; Lee JC; Goo JM; Kim HC; Park CM
    Eur Radiol; 2020 Jun; 30(6):3295-3305. PubMed ID: 32055949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple prediction model using size measures for discrimination of invasive adenocarcinomas among incidental pulmonary subsolid nodules considered for resection.
    Kim H; Goo JM; Park CM
    Eur Radiol; 2019 Apr; 29(4):1674-1683. PubMed ID: 30255253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study to evaluate CT-based semantic and radiomic features in preoperative diagnosis of invasive pulmonary adenocarcinomas manifesting as subsolid nodules.
    Wu YJ; Liu YC; Liao CY; Tang EK; Wu FZ
    Sci Rep; 2021 Jan; 11(1):66. PubMed ID: 33462251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based differentiation of invasive adenocarcinomas from preinvasive or minimally invasive lesions among pulmonary subsolid nodules.
    Park S; Park G; Lee SM; Kim W; Park H; Jung K; Seo JB
    Eur Radiol; 2021 Aug; 31(8):6239-6247. PubMed ID: 33555355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between transient and persistent subsolid pulmonary nodules on baseline CT using deep transfer learning.
    Huang C; Lv W; Zhou C; Mao L; Xu Q; Li X; Qi L; Xia F; Li X; Zhang Q; Zhang L; Lu G
    Eur Radiol; 2020 Dec; 30(12):6913-6923. PubMed ID: 32696253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Lesion Computed Tomography-Based Entropy Parameters for the Differentiation of Minimally Invasive and Invasive Adenocarcinomas Appearing as Pulmonary Subsolid Nodules.
    Chen X; Feng B; Chen Y; Hao Y; Duan X; Cui E; Liu Z; Zhang C; Long W
    J Comput Assist Tomogr; 2019; 43(5):817-824. PubMed ID: 31343995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
    Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W
    Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural history of pathologically confirmed pulmonary subsolid nodules with deep learning-assisted nodule segmentation.
    Qi LL; Wang JW; Yang L; Huang Y; Zhao SJ; Tang W; Jin YJ; Zhang ZW; Zhou Z; Yu YZ; Wang YZ; Wu N
    Eur Radiol; 2021 Jun; 31(6):3884-3897. PubMed ID: 33219848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of prediction models for risk stratification of incidentally detected pulmonary subsolid nodules: a retrospective cohort study in a Korean tertiary medical centre.
    Kim H; Park CM; Jeon S; Lee JH; Ahn SY; Yoo RE; Lim HJ; Park J; Lim WH; Hwang EJ; Lee SM; Goo JM
    BMJ Open; 2018 May; 8(5):e019996. PubMed ID: 29794091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT.
    Qi K; Wang K; Wang X; Zhang YD; Lin G; Zhang X; Liu H; Huang W; Wu J; Zhao K; Liu J; Li J; Zhang X
    AJR Am J Roentgenol; 2024 Jan; 222(1):e2329674. PubMed ID: 37493322
    [No Abstract]   [Full Text] [Related]  

  • 11. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas.
    Feng B; Chen X; Chen Y; Lu S; Liu K; Li K; Liu Z; Hao Y; Li Z; Zhu Z; Yao N; Liang G; Zhang J; Long W; Liu X
    Eur Radiol; 2020 Dec; 30(12):6497-6507. PubMed ID: 32594210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin-slice computed tomography enables to classify pulmonary subsolid nodules into pre-invasive lesion/minimally invasive adenocarcinoma and invasive adenocarcinoma: a retrospective study.
    Li M; Zhu L; Lv Y; Shen L; Han Y; Ye B
    Sci Rep; 2023 Apr; 13(1):6999. PubMed ID: 37117233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs.
    Choi H; Kim H; Hong W; Park J; Hwang EJ; Park CM; Kim YT; Goo JM
    Eur Radiol; 2021 May; 31(5):2866-2876. PubMed ID: 33125556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HRCT features distinguishing pre-invasive from invasive pulmonary adenocarcinomas appearing as ground-glass nodules.
    Zhang Y; Shen Y; Qiang JW; Ye JD; Zhang J; Zhao RY
    Eur Radiol; 2016 Sep; 26(9):2921-8. PubMed ID: 26662263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a Commercially Available Deep Learning Algorithm to Measure the Solid Portions of Lung Cancer Manifesting as Subsolid Lesions at CT: Comparisons with Radiologists and Invasive Component Size at Pathologic Examination.
    Ahn Y; Lee SM; Noh HN; Kim W; Choe J; Do KH; Seo JB
    Radiology; 2021 Apr; 299(1):202-210. PubMed ID: 33529136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary subsolid nodules: value of semi-automatic measurement in diagnostic accuracy, diagnostic reproducibility and nodule classification agreement.
    Kim H; Park CM; Hwang EJ; Ahn SY; Goo JM
    Eur Radiol; 2018 May; 28(5):2124-2133. PubMed ID: 29196857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images.
    Wang J; Chen X; Lu H; Zhang L; Pan J; Bao Y; Su J; Qian D
    Med Phys; 2020 Apr; 47(4):1738-1749. PubMed ID: 32020649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided Detection of Subsolid Nodules at Chest CT: Improved Performance with Deep Learning-based CT Section Thickness Reduction.
    Park S; Lee SM; Kim W; Park H; Jung KH; Do KH; Seo JB
    Radiology; 2021 Apr; 299(1):211-219. PubMed ID: 33560190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of CT Reconstruction Algorithm on the Diagnostic Performance of Radiomics Models: A Task-Based Approach for Pulmonary Subsolid Nodules.
    Kim H; Park CM; Gwak J; Hwang EJ; Lee SY; Jung J; Hong H; Goo JM
    AJR Am J Roentgenol; 2019 Mar; 212(3):505-512. PubMed ID: 30476456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Malignancy and Invasiveness of Pulmonary Subsolid Nodules on CT Images Using Deep Learning.
    Shen T; Hou R; Ye X; Li X; Xiong J; Zhang Q; Zhang C; Cai X; Yu W; Zhao J; Fu X
    Front Oncol; 2021; 11():700158. PubMed ID: 34381723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.