These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32055981)

  • 1. A positive influence of basal ganglia iron concentration on implicit sequence learning.
    Persson J; Garzón B; Sitnikov R; Bäckman L; Kalpouzos G
    Brain Struct Funct; 2020 Mar; 225(2):735-749. PubMed ID: 32055981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron content affects age group differences in associative learning-related fMRI activity.
    Petok JR; Merenstein JL; Bennett IJ
    Neuroimage; 2024 Jan; 285():120478. PubMed ID: 38036152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic susceptibility of brain iron is associated with childhood spatial IQ.
    Carpenter KLH; Li W; Wei H; Wu B; Xiao X; Liu C; Worley G; Egger HL
    Neuroimage; 2016 May; 132():167-174. PubMed ID: 26899787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of medial temporal lobe structures in implicit learning: an event-related FMRI study.
    Rose M; Haider H; Weiller C; Büchel C
    Neuron; 2002 Dec; 36(6):1221-31. PubMed ID: 12495634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional brain activation during concurrent implicit and explicit sequence learning.
    Aizenstein HJ; Stenger VA; Cochran J; Clark K; Johnson M; Nebes RD; Carter CS
    Cereb Cortex; 2004 Feb; 14(2):199-208. PubMed ID: 14704217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basal ganglia are active during motor performance recovery after a demanding motor task.
    Bonzano L; Tacchino A; Saitta L; Roccatagliata L; Avanzino L; Mancardi GL; Bove M
    Neuroimage; 2013 Jan; 65():257-66. PubMed ID: 23063450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults.
    Thomas KM; Hunt RH; Vizueta N; Sommer T; Durston S; Yang Y; Worden MS
    J Cogn Neurosci; 2004 Oct; 16(8):1339-51. PubMed ID: 15509382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similar network activated by young and old adults during the acquisition of a motor sequence.
    Daselaar SM; Rombouts SA; Veltman DJ; Raaijmakers JG; Jonker C
    Neurobiol Aging; 2003 Nov; 24(7):1013-9. PubMed ID: 12928061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor imagery-based implicit sequence learning depends on the formation of stimulus-response associations.
    Kraeutner SN; Gaughan TC; Eppler SN; Boe SG
    Acta Psychol (Amst); 2017 Jul; 178():48-55. PubMed ID: 28577488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically Organized Medial Frontal Cortex-Basal Ganglia Loops Selectively Control Task- and Response-Selection.
    Korb FM; Jiang J; King JA; Egner T
    J Neurosci; 2017 Aug; 37(33):7893-7905. PubMed ID: 28716966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basal ganglia involvement in memory-guided movement sequencing.
    Menon V; Anagnoson RT; Glover GH; Pfefferbaum A
    Neuroreport; 2000 Nov; 11(16):3641-5. PubMed ID: 11095535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo evaluation of heme and non-heme iron content and neuronal density in human basal ganglia.
    Yablonskiy DA; Wen J; Kothapalli SVVN; Sukstanskii AL
    Neuroimage; 2021 Jul; 235():118012. PubMed ID: 33838265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor control in basal ganglia circuits using fMRI and brain atlas approaches.
    Lehéricy S; Bardinet E; Tremblay L; Van de Moortele PF; Pochon JB; Dormont D; Kim DS; Yelnik J; Ugurbil K
    Cereb Cortex; 2006 Feb; 16(2):149-61. PubMed ID: 15858164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional coherence of striatal resting-state networks is modulated by striatal iron content.
    Salami A; Avelar-Pereira B; Garzón B; Sitnikov R; Kalpouzos G
    Neuroimage; 2018 Dec; 183():495-503. PubMed ID: 30125714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task.
    Watanabe T; Hanajima R; Shirota Y; Tsutsumi R; Shimizu T; Hayashi T; Terao Y; Ugawa Y; Katsura M; Kunimatsu A; Ohtomo K; Hirose S; Miyashita Y; Konishi S
    J Neurosci; 2015 Mar; 35(12):4813-23. PubMed ID: 25810512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple sclerosis and the accumulation of iron in the Basal Ganglia: quantitative assessment of brain iron using MRI t(2) relaxometry.
    Burgetova A; Seidl Z; Krasensky J; Horakova D; Vaneckova M
    Eur Neurol; 2010; 63(3):136-43. PubMed ID: 20130410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related dedifferentiation of learning systems: an fMRI study of implicit and explicit learning.
    Dennis NA; Cabeza R
    Neurobiol Aging; 2011 Dec; 32(12):2318.e17-30. PubMed ID: 20471139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elderly adults show higher ventral striatal activation in response to motor performance related rewards than young adults.
    Widmer M; Stulz S; Luft AR; Lutz K
    Neurosci Lett; 2017 Nov; 661():18-22. PubMed ID: 28939388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Role of Cortex-Basal Ganglia Interactions for Category Learning: A Neurocomputational Approach.
    Villagrasa F; Baladron J; Vitay J; Schroll H; Antzoulatos EG; Miller EK; Hamker FH
    J Neurosci; 2018 Oct; 38(44):9551-9562. PubMed ID: 30228231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training.
    Walz AD; Doppl K; Kaza E; Roschka S; Platz T; Lotze M
    Behav Brain Res; 2015 Feb; 278():393-403. PubMed ID: 25194587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.