These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 32056197)
1. Relative efficiency of using summary versus individual data in random-effects meta-analysis. Chen DG; Liu D; Min X; Zhang H Biometrics; 2020 Dec; 76(4):1319-1329. PubMed ID: 32056197 [TBL] [Abstract][Full Text] [Related]
2. Multivariate Meta-Analysis of Heterogeneous Studies Using Only Summary Statistics: Efficiency and Robustness. Liu D; Liu R; Xie M J Am Stat Assoc; 2015; 110(509):326-340. PubMed ID: 26190875 [TBL] [Abstract][Full Text] [Related]
3. The relative benefits of meta-analysis conducted with individual participant data versus aggregated data. Cooper H; Patall EA Psychol Methods; 2009 Jun; 14(2):165-76. PubMed ID: 19485627 [TBL] [Abstract][Full Text] [Related]
4. One-stage random effects meta-analysis using linear mixed models for aggregate continuous outcome data. Papadimitropoulou K; Stijnen T; Dekkers OM; le Cessie S Res Synth Methods; 2019 Sep; 10(3):360-375. PubMed ID: 30523676 [TBL] [Abstract][Full Text] [Related]
5. Systematic review of methods for individual patient data meta- analysis with binary outcomes. Thomas D; Radji S; Benedetti A BMC Med Res Methodol; 2014 Jun; 14():79. PubMed ID: 24943877 [TBL] [Abstract][Full Text] [Related]
6. Efficient two-step multivariate random effects meta-analysis of individual participant data for longitudinal clinical trials using mixed effects models. Noma H; Maruo K; Gosho M; Levine SZ; Goldberg Y; Leucht S; Furukawa TA BMC Med Res Methodol; 2019 Feb; 19(1):33. PubMed ID: 30764757 [TBL] [Abstract][Full Text] [Related]
7. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Burke DL; Ensor J; Riley RD Stat Med; 2017 Feb; 36(5):855-875. PubMed ID: 27747915 [TBL] [Abstract][Full Text] [Related]
8. Comparison of one-step and two-step meta-analysis models using individual patient data. Mathew T; Nordström K Biom J; 2010 Apr; 52(2):271-87. PubMed ID: 20349448 [TBL] [Abstract][Full Text] [Related]
9. Meta-analysis of continuous outcomes: Using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment-by-baseline modification. Papadimitropoulou K; Stijnen T; Riley RD; Dekkers OM; le Cessie S Res Synth Methods; 2020 Nov; 11(6):780-794. PubMed ID: 32643264 [TBL] [Abstract][Full Text] [Related]
10. Efficient integration of aggregate data and individual participant data in one-way mixed models. Agarwala N; Park J; Roy A Stat Med; 2022 Apr; 41(9):1555-1572. PubMed ID: 35040178 [TBL] [Abstract][Full Text] [Related]
11. Statistical approaches to identify subgroups in meta-analysis of individual participant data: a simulation study. Belias M; Rovers MM; Reitsma JB; Debray TPA; IntHout J BMC Med Res Methodol; 2019 Sep; 19(1):183. PubMed ID: 31477023 [TBL] [Abstract][Full Text] [Related]
12. Individual participant data meta-analysis of continuous outcomes: A comparison of approaches for specifying and estimating one-stage models. Legha A; Riley RD; Ensor J; Snell KIE; Morris TP; Burke DL Stat Med; 2018 Dec; 37(29):4404-4420. PubMed ID: 30101507 [TBL] [Abstract][Full Text] [Related]
13. Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: Individual patient data may be beneficial if only for a subset of trials. Donegan S; Williamson P; D'Alessandro U; Garner P; Smith CT Stat Med; 2013 Mar; 32(6):914-30. PubMed ID: 22987606 [TBL] [Abstract][Full Text] [Related]
14. One-stage individual participant data meta-analysis models for continuous and binary outcomes: Comparison of treatment coding options and estimation methods. Riley RD; Legha A; Jackson D; Morris TP; Ensor J; Snell KIE; White IR; Burke DL Stat Med; 2020 Aug; 39(19):2536-2555. PubMed ID: 32394498 [TBL] [Abstract][Full Text] [Related]
15. On random-effects meta-analysis. Zeng D; Lin DY Biometrika; 2015 Jun; 102(2):281-294. PubMed ID: 26688589 [TBL] [Abstract][Full Text] [Related]
16. Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials. Jones AP; Riley RD; Williamson PR; Whitehead A Clin Trials; 2009 Feb; 6(1):16-27. PubMed ID: 19254930 [TBL] [Abstract][Full Text] [Related]
17. Individual participant data meta-analysis of prognostic factor studies: state of the art? Abo-Zaid G; Sauerbrei W; Riley RD BMC Med Res Methodol; 2012 Apr; 12():56. PubMed ID: 22530717 [TBL] [Abstract][Full Text] [Related]
18. A comparison of one-stage vs two-stage individual patient data meta-analysis methods: A simulation study. Kontopantelis E Res Synth Methods; 2018 Sep; 9(3):417-430. PubMed ID: 29786975 [TBL] [Abstract][Full Text] [Related]
19. Empirical comparison of subgroup effects in conventional and individual patient data meta-analyses. Koopman L; van der Heijden GJ; Hoes AW; Grobbee DE; Rovers MM Int J Technol Assess Health Care; 2008; 24(3):358-61. PubMed ID: 18601805 [TBL] [Abstract][Full Text] [Related]
20. Simulation-based power calculations for planning a two-stage individual participant data meta-analysis. Ensor J; Burke DL; Snell KIE; Hemming K; Riley RD BMC Med Res Methodol; 2018 May; 18(1):41. PubMed ID: 29776399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]