These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 32056215)
1. Overexpression of an endogenous raw starch digesting mesophilic α-amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol. Tang S; Xu T; Peng J; Zhou K; Zhu Y; Zhou W; Cheng H; Zhou H J Sci Food Agric; 2020 May; 100(7):3013-3023. PubMed ID: 32056215 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Du R; Song Q; Zhang Q; Zhao F; Kim RC; Zhou Z; Han Y Int J Biol Macromol; 2018 Aug; 115():1151-1156. PubMed ID: 29729336 [TBL] [Abstract][Full Text] [Related]
3. Multiplex genetic engineering improves endogenous expression of mesophilic α-amylase gene in a wild strain Bacillus amyloliquefaciens 205. Zhao X; Zheng H; Zhen J; Shu W; Yang S; Xu J; Song H; Ma Y Int J Biol Macromol; 2020 Dec; 165(Pt A):609-618. PubMed ID: 33010275 [TBL] [Abstract][Full Text] [Related]
4. Cloning and expression of raw-starch-digesting alpha-amylase gene from Bacillus circulans F-2 in Escherichia coli. Kim CH; Sata H; Taniguchi H; Maruyama Y Biochim Biophys Acta; 1990 Apr; 1048(2-3):223-30. PubMed ID: 2182125 [TBL] [Abstract][Full Text] [Related]
5. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis. Yang H; Liu L; Li J; Du G; Chen J Microb Cell Fact; 2011 Oct; 10():77. PubMed ID: 21978209 [TBL] [Abstract][Full Text] [Related]
6. Reducing the cell lysis to enhance yield of acid-stable alpha amylase by deletion of multiple peptidoglycan hydrolase-related genes in Bacillus amyloliquefaciens. Zhang J; Xu X; Li X; Chen X; Zhou C; Liu Y; Li Y; Lu F Int J Biol Macromol; 2021 Jan; 167():777-786. PubMed ID: 33278447 [TBL] [Abstract][Full Text] [Related]
8. Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02. Xin Q; Chen Y; Chen Q; Wang B; Pan L Microb Cell Fact; 2022 May; 21(1):99. PubMed ID: 35643496 [TBL] [Abstract][Full Text] [Related]
9. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins. de Moraes LM; Astolfi-Filho S; Oliver SG Appl Microbiol Biotechnol; 1995 Nov; 43(6):1067-76. PubMed ID: 8590658 [TBL] [Abstract][Full Text] [Related]
10. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Wang P; Wang P; Tian J; Yu X; Chang M; Chu X; Wu N Sci Rep; 2016 Feb; 6():22229. PubMed ID: 26916714 [TBL] [Abstract][Full Text] [Related]
11. Screening, Gene Cloning, and Characterizations of an Acid-Stable α-Amylase. Liu X; Jia W; An Y; Cheng K; Wang M; Yang S; Chen H J Microbiol Biotechnol; 2015 Jun; 25(6):828-36. PubMed ID: 25563420 [TBL] [Abstract][Full Text] [Related]
12. Improved thermostable α-amylase activity of Bacillus amyloliquefaciens by low-energy ion implantation. Li XY; Zhang JL; Zhu SW Genet Mol Res; 2011 Sep; 10(3):2181-9. PubMed ID: 21968725 [TBL] [Abstract][Full Text] [Related]
13. Expression of Thermobifida fusca thermostable raw starch digesting alpha-amylase in Pichia pastoris and its application in raw sago starch hydrolysis. Yang CH; Huang YC; Chen CY; Wen CY J Ind Microbiol Biotechnol; 2010 Apr; 37(4):401-6. PubMed ID: 20039188 [TBL] [Abstract][Full Text] [Related]
14. Extensive hydrolysis of raw rice starch by a chimeric α-amylase engineered with α-amylase (AmyP) and a starch-binding domain from Cryptococcus sp. S-2. Peng H; Li R; Li F; Zhai L; Zhang X; Xiao Y; Gao Y Appl Microbiol Biotechnol; 2018 Jan; 102(2):743-750. PubMed ID: 29159586 [TBL] [Abstract][Full Text] [Related]
15. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase. Šokarda Slavić M; Pešić M; Vujčić Z; Božić N Appl Microbiol Biotechnol; 2016 Mar; 100(6):2709-19. PubMed ID: 26545758 [TBL] [Abstract][Full Text] [Related]
16. Improving thermostability of Bacillus amyloliquefaciens alpha-amylase by multipoint mutations. Yuan S; Yan R; Lin B; Li R; Ye X Biochem Biophys Res Commun; 2023 Apr; 653():69-75. PubMed ID: 36857902 [TBL] [Abstract][Full Text] [Related]
17. Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1. Du R; Zhao F; Qiao X; Song Q; Ye G; Wang Y; Wang B; Han Y; Zhou Z Prep Biochem Biotechnol; 2018; 48(8):768-774. PubMed ID: 30303444 [TBL] [Abstract][Full Text] [Related]
18. Probing the function of C-terminal region of recombinant α-amylase BmaN1 from Frima FK; Thufail MA; Madhani IN; Nafisah Z; Shofiyah SS; Ulpiyana A; Puspasari F; Aditama R; Ihsanawati I; Natalia D Microbiol Spectr; 2024 Oct; 12(10):e0335123. PubMed ID: 39212453 [TBL] [Abstract][Full Text] [Related]
19. Enhanced extracellular raw starch-degrading α-amylase production in Bacillus subtilis by promoter engineering and translation initiation efficiency optimization. Li H; Yao D; Pan Y; Chen X; Fang Z; Xiao Y Microb Cell Fact; 2022 Jun; 21(1):127. PubMed ID: 35761342 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp. Jiang T; Cai M; Huang M; He H; Lu J; Zhou X; Zhang Y Protein Expr Purif; 2015 Oct; 114():15-22. PubMed ID: 26073094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]