These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32056294)

  • 1. Recent Advances in One-Electron-Oxidized Cu
    Oshita H; Shimazaki Y
    Chemistry; 2020 Jul; 26(38):8324-8340. PubMed ID: 32056294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models.
    Lyons CT; Stack TD
    Coord Chem Rev; 2013 Jan; 257(2):528-540. PubMed ID: 23264696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galactose oxidase models: solution chemistry, and phenoxyl radical generation mediated by the copper status.
    Michel F; Thomas F; Hamman S; Saint-Aman E; Bucher C; Pierre JL
    Chemistry; 2004 Sep; 10(17):4115-25. PubMed ID: 15352095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the one-electron oxidized Cu(II)-salen complexes with a side chain aromatic ring: the effect of the indole ring on the Cu(II)-phenoxyl radical species.
    Oshita H; Yoshimura T; Mori S; Tani F; Shimazaki Y; Yamauchi O
    J Biol Inorg Chem; 2018 Jan; 23(1):51-59. PubMed ID: 29218633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. π-π Stacking Interaction in an Oxidized Cu
    Oshita H; Suzuki T; Kawashima K; Abe H; Tani F; Mori S; Yajima T; Shimazaki Y
    Chemistry; 2019 Jun; 25(32):7649-7658. PubMed ID: 30912194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the oxidized active site of galactose oxidase from realistic in silico models.
    Rokhsana D; Dooley DM; Szilagyi RK
    J Am Chem Soc; 2006 Dec; 128(49):15550-1. PubMed ID: 17147339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the Tyr-Cys cross-link to the active site properties of galactose oxidase.
    Rokhsana D; Howells AE; Dooley DM; Szilagyi RK
    Inorg Chem; 2012 Mar; 51(6):3513-24. PubMed ID: 22372371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of Benzyl Alcohol with Cu(II) and Zn(II) Complexes of the Phenoxyl Radical as a Model of the Reaction of Galactose Oxidase.
    Itoh S; Taki M; Takayama S; Nagatomo S; Kitagawa T; Sakurada N; Arakawa R; Fukuzumi S
    Angew Chem Int Ed Engl; 1999 Sep; 38(18):2774-2776. PubMed ID: 10508379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen atom abstraction by Cu(II)- and Zn(II)-phenoxyl radical complexes, models for the active form of galactose oxidase.
    Taki M; Kumei H; Itoh S; Fukuzumi S
    J Inorg Biochem; 2000 Jan; 78(1):1-5. PubMed ID: 10714699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactose oxidase models: tuning the properties of CuII-phenoxyl radicals.
    Philibert A; Thomas F; Philouze C; Hamman S; Saint-Aman E; Pierre JL
    Chemistry; 2003 Aug; 9(16):3803-12. PubMed ID: 12916104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity.
    Wang Y; DuBois JL; Hedman B; Hodgson KO; Stack TD
    Science; 1998 Jan; 279(5350):537-40. PubMed ID: 9438841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic development of computational models for the catalytic site in galactose oxidase: impact of outer-sphere residues on the geometric and electronic structures.
    Rokhsana D; Dooley DM; Szilagyi RK
    J Biol Inorg Chem; 2008 Mar; 13(3):371-83. PubMed ID: 18057969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of oxidation state in copper complexes with phenolate ligands.
    Takeyama T; Shimazaki Y
    Dalton Trans; 2024 Feb; 53(9):3911-3929. PubMed ID: 38319292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marked stabilization of redox states and enhanced catalytic activity in galactose oxidase models based on transition metal S-methylisothiosemicarbazonates with -SR group in ortho position to the phenolic oxygen.
    Arion VB; Platzer S; Rapta P; Machata P; Breza M; Vegh D; Dunsch L; Telser J; Shova S; Mac Leod TC; Pombeiro AJ
    Inorg Chem; 2013 Jul; 52(13):7524-40. PubMed ID: 23758222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and analysis of a semi-quantitative energy profile for the reaction catalyzed by the radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochim Biophys Acta; 1998 Apr; 1384(1):43-54. PubMed ID: 9602051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Structural Models of Galactose Oxidase to Homogeneous Catalysis: Efficient Aerobic Oxidation of Alcohols.
    Chaudhuri P; Hess M; Flörke U; Wieghardt K
    Angew Chem Int Ed Engl; 1998 Sep; 37(16):2217-2220. PubMed ID: 29711456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. π-π Stacking Interaction of Metal Phenoxyl Radical Complexes.
    Oshita H; Shimazaki Y
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes.
    Chaudhuri P; Wieghardt K; Weyhermüller T; Paine TK; Mukherjee S; Mukherjee C
    Biol Chem; 2005 Oct; 386(10):1023-33. PubMed ID: 16218874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase.
    Ito N; Phillips SE; Stevens C; Ogel ZB; McPherson MJ; Keen JN; Yadav KD; Knowles PF
    Nature; 1991 Mar; 350(6313):87-90. PubMed ID: 2002850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.