BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 32056374)

  • 1. Hyaluronan-based hydrogels as versatile tumor-like models: Tunable ECM and stiffness with genipin-crosslinking.
    Bonnesœur S; Morin-Grognet S; Thoumire O; Le Cerf D; Boyer O; Vannier JP; Labat B
    J Biomed Mater Res A; 2020 May; 108(5):1256-1268. PubMed ID: 32056374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering.
    Vanderhooft JL; Alcoutlabi M; Magda JJ; Prestwich GD
    Macromol Biosci; 2009 Jan; 9(1):20-8. PubMed ID: 18839402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Hydrogels to Engineer Cancer Microenvironments.
    Park KM; Lewis D; Gerecht S
    Annu Rev Biomed Eng; 2017 Jun; 19():109-133. PubMed ID: 28633560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels.
    Wang C; Sinha S; Jiang X; Murphy L; Fitch S; Wilson C; Grant G; Yang F
    Tissue Eng Part A; 2021 Mar; 27(5-6):390-401. PubMed ID: 32731804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glioblastoma mechanobiology at multiple length scales.
    Kondapaneni RV; Gurung SK; Nakod PS; Goodarzi K; Yakati V; Lenart NA; Rao SS
    Biomater Adv; 2024 Jun; 160():213860. PubMed ID: 38640876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Combined Influence of Hydrogel Stiffness and Matrix-Bound Hyaluronic Acid Content on Glioblastoma Invasion.
    Chen JE; Pedron S; Harley BAC
    Macromol Biosci; 2017 Aug; 17(8):. PubMed ID: 28379642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids.
    Xu X; Gurski LA; Zhang C; Harrington DA; Farach-Carson MC; Jia X
    Biomaterials; 2012 Dec; 33(35):9049-60. PubMed ID: 22999468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammary tissue-derived extracellular matrix hydrogels reveal the role of irradiation in driving a pro-tumor and immunosuppressive microenvironment.
    Zhu T; Alves SM; Adamo A; Wen X; Corn KC; Shostak A; Johnson S; Shaub ND; Martello SE; Hacker BC; D'Amore A; Bardhan R; Rafat M
    Biomaterials; 2024 Jul; 308():122531. PubMed ID: 38531198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular Matrix Properties Regulate the Migratory Response of Glioblastoma Stem Cells in Three-Dimensional Culture.
    Herrera-Perez M; Voytik-Harbin SL; Rickus JL
    Tissue Eng Part A; 2015 Oct; 21(19-20):2572-82. PubMed ID: 26161688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia activates enhanced invasive potential and endogenous hyaluronic acid production by glioblastoma cells.
    Chen JE; Lumibao J; Blazek A; Gaskins HR; Harley B
    Biomater Sci; 2018 Mar; 6(4):854-862. PubMed ID: 29485655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Varying the RGD concentration on a hyaluronic acid hydrogel influences dormancy versus proliferation in brain metastatic breast cancer cells.
    Goodarzi K; Lane R; Rao SS
    J Biomed Mater Res A; 2024 May; 112(5):710-720. PubMed ID: 38018303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Extracellular Matrix Composition to Improve Breast Cancer Modeling.
    Byrne CE; Decombe JB; Bingham GC; Remont J; Miller LG; Khalif L; King CT; Hamel K; Bunnell BA; Burow ME; Martin EC
    Tissue Eng Part A; 2021 Apr; 27(7-8):500-511. PubMed ID: 33797977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Rigidity Connection: Matrix Stiffness and Its Impact on Cancer Progression.
    Yui A; Oudin MJ
    Cancer Res; 2024 Apr; 84(7):958-960. PubMed ID: 38558132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular Matrix-Derived Biophysical Cues Mediate Interstitial Flow-Induced Sprouting Angiogenesis.
    Chang CW; Shih HC; Cortes-Medina MG; Beshay PE; Avendano A; Seibel AJ; Liao WH; Tung YC; Song JW
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15047-15058. PubMed ID: 36916875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Hydrogels from Pulmonary Extracellular Matrix for 3D Cell Culture.
    Link PA; Pouliot RA; Mikhaiel NS; Young BM; Heise RL
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of gelatin-based hydrogels for colon and pancreas studies using 3D
    Pamplona R; González-Lana S; Ochoa I; Martín-Rapún R; Sánchez-Somolinos C
    J Mater Chem B; 2024 Mar; 12(12):3144-3160. PubMed ID: 38456751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics 3D gel-island chip for single cell isolation and lineage-dependent drug responses study.
    Zhang Z; Chen YC; Cheng YH; Luan Y; Yoon E
    Lab Chip; 2016 Jul; 16(13):2504-2512. PubMed ID: 27270563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide Hydrogels - Versatile Matrices for 3D Cell Culture in Cancer Medicine.
    Worthington P; Pochan DJ; Langhans SA
    Front Oncol; 2015; 5():92. PubMed ID: 25941663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring microenvironment-tuned nuclear stiffness of cancer cells with atomic force microscopy.
    Barai A; Das A; Sen S
    STAR Protoc; 2021 Mar; 2(1):100296. PubMed ID: 33532741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FLIm and Raman Spectroscopy for Investigating Biochemical Changes of Bovine Pericardium upon Genipin Cross-Linking.
    Shaik TA; Alfonso-Garcia A; Richter M; Korinth F; Krafft C; Marcu L; Popp J
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32854230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.