BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32056450)

  • 1. Hierarchical Organization of Functional Brain Networks Revealed by Hybrid Spatiotemporal Deep Learning.
    Zhang W; Zhao S; Hu X; Dong Q; Huang H; Zhang S; Zhao Y; Dai H; Ge F; Guo L; Liu T
    Brain Connect; 2020 Mar; 10(2):72-82. PubMed ID: 32056450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning method for autism spectrum disorder identification based on interactions of hierarchical brain networks.
    Qiang N; Gao J; Dong Q; Li J; Zhang S; Liang H; Sun Y; Ge B; Liu Z; Wu Z; Liu T; Yue H; Zhao S
    Behav Brain Res; 2023 Aug; 452():114603. PubMed ID: 37516208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Hierarchical Brain Networks via Volumetric Sparse Deep Belief Network.
    Dong Q; Ge F; Ning Q; Zhao Y; Lv J; Huang H; Yuan J; Jiang X; Shen D; Liu T
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1739-1748. PubMed ID: 31647417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Task fMRI Data Via Deep Convolutional Autoencoder.
    Huang H; Hu X; Zhao Y; Makkie M; Dong Q; Zhao S; Guo L; Liu T
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1551-1561. PubMed ID: 28641247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous spatial-temporal decomposition for connectome-scale brain networks by deep sparse recurrent auto-encoder.
    Li Q; Dong Q; Ge F; Qiang N; Wu X; Liu T
    Brain Imaging Behav; 2021 Oct; 15(5):2646-2660. PubMed ID: 33755922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs).
    Yan J; Chen Y; Xiao Z; Zhang S; Jiang M; Wang T; Zhang T; Lv J; Becker B; Zhang R; Zhu D; Han J; Yao D; Kendrick KM; Liu T; Jiang X
    Med Image Anal; 2022 Aug; 80():102518. PubMed ID: 35749981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Individual Naturalistic Functional Brain Networks with Group Consistency uncovered by a Two-Stage NAS-Volumetric Sparse DBN Framework.
    Xu S; Ren Y; Tao Z; Song L; He X
    eNeuro; 2022 Aug; 9(5):. PubMed ID: 35995557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical multi-resolution mesh networks for brain decoding.
    Onal Ertugrul I; Ozay M; Yarman Vural FT
    Brain Imaging Behav; 2018 Aug; 12(4):1067-1083. PubMed ID: 28980144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Brain Networks at Multiple Time Scales via Deep Recurrent Neural Network.
    Cui Y; Zhao S; Wang H; Xie L; Chen Y; Han J; Guo L; Zhou F; Liu T
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2515-2525. PubMed ID: 30475739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Method for Extracting Hierarchical Functional Subnetworks Based on a Multisubject Spectral Clustering Approach.
    Liang X; Yeh CH; Connelly A; Calamante F
    Brain Connect; 2019 Jun; 9(5):399-414. PubMed ID: 30880430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Deep Learning Model for Task-Evoked fMRI Data Classification.
    Huang X; Xiao J; Wu C
    Comput Intell Neurosci; 2021; 2021():6660866. PubMed ID: 34422034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI.
    Zhao S; Han J; Hu X; Jiang X; Lv J; Zhang T; Zhang S; Guo L; Liu T
    Brain Imaging Behav; 2018 Jun; 12(3):743-757. PubMed ID: 28600737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering hierarchical common brain networks via multimodal deep belief network.
    Zhang S; Dong Q; Zhang W; Huang H; Zhu D; Liu T
    Med Image Anal; 2019 May; 54():238-252. PubMed ID: 30954851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control energy assessment of spatial interactions among macro-scale brain networks.
    Yuan J; Ji S; Luo L; Lv J; Liu T
    Hum Brain Mapp; 2022 May; 43(7):2181-2203. PubMed ID: 35072300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correspondence between evoked and intrinsic functional brain network configurations.
    Bolt T; Nomi JS; Rubinov M; Uddin LQ
    Hum Brain Mapp; 2017 Apr; 38(4):1992-2007. PubMed ID: 28052450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning models of cognitive processes constrained by human brain connectomes.
    Zhang Y; Farrugia N; Bellec P
    Med Image Anal; 2022 Aug; 80():102507. PubMed ID: 35738052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical functional differences between gyri and sulci at different scales.
    Zhao L; Dai H; Wu Z; Jiang X; Zhu D; Zhang T; Liu T
    Cereb Cortex; 2024 Mar; 34(3):. PubMed ID: 38483143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing functional brain networks via Spatio-Temporal Attention 4D Convolutional Neural Networks (STA-4DCNNs).
    Jiang X; Yan J; Zhao Y; Jiang M; Chen Y; Zhou J; Xiao Z; Wang Z; Zhang R; Becker B; Zhu D; Kendrick KM; Liu T
    Neural Netw; 2023 Jan; 158():99-110. PubMed ID: 36446159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex.
    Jiang X; Li X; Lv J; Zhang T; Zhang S; Guo L; Liu T
    Hum Brain Mapp; 2015 Dec; 36(12):5301-19. PubMed ID: 26466353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.