These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32056580)
1. Spatiotemporal variability in microphytobenthic primary production across bare intertidal flat, saltmarsh, and mangrove forest of Asia and Australia. Kwon BO; Kim H; Noh J; Lee SY; Nam J; Khim JS Mar Pollut Bull; 2020 Feb; 151():110707. PubMed ID: 32056580 [TBL] [Abstract][Full Text] [Related]
2. Development of temperature-based algorithms for the estimation of microphytobenthic primary production in a tidal flat: A case study in Daebu mudflat, Korea. Kwon BO; Kim HC; Koh CH; Ryu J; Son S; Kim YH; Khim JS Environ Pollut; 2018 Oct; 241():115-123. PubMed ID: 29803025 [TBL] [Abstract][Full Text] [Related]
3. Intertidal microphytobenthic primary production and net metabolism of a tropical estuary. Corzo A; Haro S; Gómez-Ramírez E; González CJ; Papaspyrou S; Garcia-Robledo E Mar Environ Res; 2024 Nov; 202():106741. PubMed ID: 39293274 [TBL] [Abstract][Full Text] [Related]
4. Microphytobenthos spatio-temporal dynamics across an intertidal gradient using Random Forest classification and Sentinel-2 imagery. Haro S; Jesus B; Oiry S; Papaspyrou S; Lara M; González CJ; Corzo A Sci Total Environ; 2022 Jan; 804():149983. PubMed ID: 34517311 [TBL] [Abstract][Full Text] [Related]
5. Quantifying seasonal variations in microphytobenthos biomass on estuarine tidal flats using Sentinel-1/2 data. Zhang T; Tian B; Wang Y; Liu D; Sun S; Duan Y; Zhou Y Sci Total Environ; 2021 Jul; 777():146051. PubMed ID: 33677302 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal variation of extracellular polymeric substances (EPS) associated with the microphytobenthos of tidal flats in the Yellow Sea. Kim B; Lee J; Noh J; Bae H; Lee C; Ha HJ; Hwang K; Kim DU; Kwon BO; Ha HK; Pierre G; Delattre C; Michaud P; Khim JS Mar Pollut Bull; 2021 Oct; 171():112780. PubMed ID: 34343754 [TBL] [Abstract][Full Text] [Related]
7. Stable isotope signatures reveal the significant contributions of microphytobenthos and saltmarsh-driven nutrition in the intertidal benthic food webs. Lee IO; Noh J; Lee J; Kim B; Hwang K; Kwon BO; Lee MJ; Ryu J; Nam J; Khim JS Sci Total Environ; 2021 Feb; 756():144068. PubMed ID: 33288261 [TBL] [Abstract][Full Text] [Related]
8. Microphytobenthic biomass, species composition and environmental gradients in the mangrove intertidal region of the Andaman Archipelago, India. Balasubramaniam J; Prasath D; Jayaraj KA Environ Monit Assess; 2017 May; 189(5):231. PubMed ID: 28439805 [TBL] [Abstract][Full Text] [Related]
9. Assessing the contribution of mangrove carbon and of other basal sources to intertidal flats adjacent to one of the largest West African mangrove forests. Henriques M; Granadeiro JP; Piersma T; Leão S; Pontes S; Catry T Mar Environ Res; 2021 Jul; 169():105331. PubMed ID: 33878552 [TBL] [Abstract][Full Text] [Related]
10. Hard science is essential to restoring soft-sediment intertidal habitats in burgeoning East Asia. Lee SY; Khim JS Chemosphere; 2017 Feb; 168():765-776. PubMed ID: 27838029 [TBL] [Abstract][Full Text] [Related]
11. Rainfall effects on the erodibility of sediment and microphytobenthos in the intertidal flat. Ha HJ; Kim H; Noh J; Ha HK; Khim JS Environ Pollut; 2018 Nov; 242(Pt B):2051-2058. PubMed ID: 30231459 [TBL] [Abstract][Full Text] [Related]
12. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: The gains or losses in ecosystem services. Yim J; Kwon BO; Nam J; Hwang JH; Choi K; Khim JS Environ Pollut; 2018 Oct; 241():74-84. PubMed ID: 29803027 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia. Hayes MA; Jesse A; Hawke B; Baldock J; Tabet B; Lockington D; Lovelock CE Glob Chang Biol; 2017 Oct; 23(10):4222-4234. PubMed ID: 28407457 [TBL] [Abstract][Full Text] [Related]
14. Impact of derelict fishing gear on the seafloor integrity and benthic communities in the macrotidal flats from northern Gyeonggi Bay, west coast of Korea. Kim D; Kwon BO; Choi K Sci Total Environ; 2020 Nov; 745():141168. PubMed ID: 32731061 [TBL] [Abstract][Full Text] [Related]
15. Influence of tidal forcings on microphytobenthic resuspension dynamics and sediment fluxes in a disturbed coastal environment. Ha HJ; Kim H; Kwon BO; Khim JS; Ha HK Environ Int; 2020 Jun; 139():105743. PubMed ID: 32334124 [TBL] [Abstract][Full Text] [Related]
16. The global distribution and trajectory of tidal flats. Murray NJ; Phinn SR; DeWitt M; Ferrari R; Johnston R; Lyons MB; Clinton N; Thau D; Fuller RA Nature; 2019 Jan; 565(7738):222-225. PubMed ID: 30568300 [TBL] [Abstract][Full Text] [Related]
17. Contribution of unvegetated tidal flats to coastal carbon flux. Lin WJ; Wu J; Lin HJ Glob Chang Biol; 2020 Jun; 26(6):3443-3454. PubMed ID: 32267045 [TBL] [Abstract][Full Text] [Related]
18. Zonation and seasonality of benthic primary production and community respiration in tropical mangrove forests. Alongi DM Oecologia; 1994 Aug; 98(3-4):320-327. PubMed ID: 28313908 [TBL] [Abstract][Full Text] [Related]
19. Effects of sandy vs muddy sediments on the vertical distribution of microphytobenthos in intertidal flats of the Fraser River Estuary, Canada. Yin K; Zetsche EM; Harrison PJ Environ Sci Pollut Res Int; 2016 Jul; 23(14):14196-209. PubMed ID: 27053045 [TBL] [Abstract][Full Text] [Related]
20. Assessing biomass and primary production of microphytobenthos in depositional coastal systems using spectral information. Jacobs P; Pitarch J; Kromkamp JC; Philippart CJM PLoS One; 2021; 16(7):e0246012. PubMed ID: 34228730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]