These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32056682)

  • 21. Cosmic-muon intensity measurement and overburden estimation in a building at surface level and in an underground facility using two BC408 scintillation detectors coincidence counting system.
    Zhang W; Ungar K; Liu C; Mailhot M
    J Environ Radioact; 2016 Oct; 162-163():340-346. PubMed ID: 27340860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An anticoincidence-shielded gamma-ray spectrometer for analysis of low level environmental radionuclides.
    Byun JI; Choi YH; Kwak SI; Hwang HY; Chung KH; Choi GS; Park DW; Lee CW
    Appl Radiat Isot; 2003 May; 58(5):579-83. PubMed ID: 12735975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-level γ-ray spectrometry at the underground laboratory Garching.
    Sivers Mv; Hofmann M; Mannel T; Feilitzsch Fv; Oberauer L; Potzel W; Schönert S
    Appl Radiat Isot; 2014 Sep; 91():49-56. PubMed ID: 24905145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast in situ gamma spectroscopy using hand-held spectrometer with NaI probe.
    Guguła S; Kozak K; Mazur J; Grządziel D; Mroczek M
    J Environ Radioact; 2018 Aug; 188():87-94. PubMed ID: 29021085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ground surface ultralow background spectrometer: Active shielding improvements and coincidence measurements for the Gamma
    Cagniant A; Delaune O; Réglat M; Douysset G; Gross P; Le Petit G
    Appl Radiat Isot; 2017 Aug; 126():197-200. PubMed ID: 28187930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.
    Chagren S; Tekaya MB; Reguigui N; Gharbi F
    Appl Radiat Isot; 2016 Jan; 107():359-365. PubMed ID: 26623928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of cosmic veto shielding for HPGe-detector spectrometer.
    Hu Q; Ma H; He J; Zeng Z; Zeng M; Li T; Li Y; Yi H; Cheng J; Li J
    Appl Radiat Isot; 2016 Mar; 109():474-8. PubMed ID: 27358947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mazinger, a γ-ray spectrometry system of high efficiency and very low background for paloeoclimate applications.
    Quintana B; Pedrosa C; Bombín R; Martín S; Lozano JC
    Appl Radiat Isot; 2017 Aug; 126():116-120. PubMed ID: 28457655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The determination of the efficiency of a Compton suppressed HPGe detector using Monte Carlo simulations.
    McNamara AL; Heijnis H; Fierro D; Reinhard MI
    J Environ Radioact; 2012 Apr; 106():1-7. PubMed ID: 22304994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radioisotope studies of the farmville meteorite using γγ-coincidence spectrometry.
    Howard C; Ferm M; Cesaratto J; Daigle S; Iliadis C
    Appl Radiat Isot; 2014 Dec; 94():23-29. PubMed ID: 25063942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quadratic resampling method for the long-term γ-ray background spectra using an HPGe detector.
    Kim S; Kim SH; Ahn JK; Nam SI
    Appl Radiat Isot; 2024 Aug; 210():111341. PubMed ID: 38744039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Dortmund Low Background Facility - Low-background gamma ray spectrometry with an artificial overburden.
    Gastrich H; Gößling C; Klingenberg R; Kröninger K; Neddermann T; Nitsch C; Quante T; Zuber K
    Appl Radiat Isot; 2016 Jun; 112():165-76. PubMed ID: 27082973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of background in underground HPGe-detectors in different lead shield configurations.
    Hult M; Lutter G; Yüksel A; Marissens G; Misiaszek M; Rosengård U
    Appl Radiat Isot; 2013 Nov; 81():103-8. PubMed ID: 23602708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gamma-ray efficiency of a HPGe detector as a function of energy and geometry.
    Challan MB
    Appl Radiat Isot; 2013 Dec; 82():166-9. PubMed ID: 24007787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maximising the sensitivity of a γ spectrometer for low-energy, low-activity radionuclides using Monte Carlo simulations.
    Britton R; Burnett JL; Davies AV; Regan PH
    J Environ Radioact; 2014 Aug; 134():1-5. PubMed ID: 24631843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of the Monte Carlo method for the calibration of an in situ gamma spectrometer.
    Tzika F; Kontogeorgakos D; Vasilopoulou T; Stamatelatos IE
    Appl Radiat Isot; 2010; 68(7-8):1441-4. PubMed ID: 19945289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the shielding factors for gamma-ray spectrometers.
    Korun M; Vodenik B; Zorko B
    Appl Radiat Isot; 2014 May; 87():372-5. PubMed ID: 24300968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leda: A gamma-gamma coincidence spectrometer for the measurement of environment samples.
    Paradis H; de Vismes Ott A; Cagnat X; Piquemal F; Gurriaran R
    Appl Radiat Isot; 2017 Aug; 126():179-184. PubMed ID: 28209254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Digital gamma-gamma coincidence HPGe system for environmental analysis.
    Marković N; Roos P; Nielsen SP
    Appl Radiat Isot; 2017 Aug; 126():194-196. PubMed ID: 28065630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency calibration of HPGe detector in a PGNAA system for the measurement of aqueous samples.
    Cheng C; Jia W; Hei D; Li J; Cai P; Zhao D; Wei Z
    Appl Radiat Isot; 2019 Mar; 145():1-6. PubMed ID: 30557771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.