These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32056790)

  • 1. Radon-222 diffusion length and exhalation characteristics of uraniferous waste rock and application to mine site remediation in the Australian wet-dry tropics.
    Doering C; Akber R; Bollhöfer A; Lu P
    J Environ Radioact; 2020 May; 216():106186. PubMed ID: 32056790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term temporal variability of the radon-222 exhalation flux from a landform covered by low uranium grade waste rock.
    Bollhöfer A; Doering C
    J Environ Radioact; 2016 Jan; 151 Pt 3():593-600. PubMed ID: 26100675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the dispersion of radon-222 from a landform covered by low uranium grade waste rock.
    Doering C; McMaster SA; Johansen MP
    J Environ Radioact; 2018 Dec; 192():498-504. PubMed ID: 30114620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics.
    Lawrence CE; Akber RA; Bollhöfer A; Martin P
    J Environ Radioact; 2009 Jan; 100(1):1-8. PubMed ID: 18995934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geographic variability in radon exhalation at a rehabilitated uranium mine in the Northern Territory, Australia.
    Bollhöfer A; Storm J; Martin P; Tims S
    Environ Monit Assess; 2006 Mar; 114(1-3):313-30. PubMed ID: 16502032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A soil radiological quality guideline value for wildlife-based protection in uranium mine rehabilitation.
    Doering C; Bollhöfer A
    J Environ Radioact; 2016 Jan; 151 Pt 3():522-9. PubMed ID: 26350640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the dispersion of radionuclides in dust from a landform covered by low uranium grade waste rock.
    Doering C; McMaster SA; Johansen MP
    J Environ Radioact; 2019 Jun; 202():51-58. PubMed ID: 30797160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland).
    Fijałkowska-Lichwa L
    J Environ Radioact; 2016 Dec; 165():13-23. PubMed ID: 27573759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical model for the prediction of radon flux from uranium mill tailings at Jaduguda, India.
    Rana D; Jha V; Patnaik R; Singh MK; Jha SK; Kulkarni MS
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):24951-24960. PubMed ID: 38460038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of a remediated coal ash depository from a radiological perspective.
    Jónás J; Somlai J; Tóth-Bodrogi E; Hegedűs M; Kovács T
    J Environ Radioact; 2017 Jul; 173():75-84. PubMed ID: 28041855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radon emanation from backfilled mill tailings in underground uranium mine.
    Sahu P; Mishra DP; Panigrahi DC; Jha V; Patnaik RL; Sethy NK
    J Environ Radioact; 2014 Apr; 130():15-21. PubMed ID: 24412814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PUBLIC EXPOSURE TO EXTERNAL GAMMA RADIATION ON A MINE LANDFORM COVERED BY LOW URANIUM GRADE WASTE ROCK.
    Doering C
    Radiat Prot Dosimetry; 2020 Jun; 188(1):123-128. PubMed ID: 31841596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effect of a cover layer on radon exhalation from uranium mill tailings: transient radon flux analysis.
    Ferry C; Richon P; Beneito A; Robé MC
    J Environ Radioact; 2002; 63(1):49-64. PubMed ID: 12230135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation data input for the design of dry or semi-dry U tailings disposal.
    Kvasnicka J
    Health Phys; 1986 Sep; 51(3):329-36. PubMed ID: 3744832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two numerical modelling approaches to a field experiment of unsaturated radon transport in a covered uranium mill tailings soil (Lavaugrasse, France).
    Saâdi Z; Guillevic J
    J Environ Radioact; 2016 Jan; 151 Pt 2():361-72. PubMed ID: 25864040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Land application of mine water causes minimal uranium loss offsite in the wet-dry tropics: Ranger Uranium Mine, Northern Territory, Australia.
    Mumtaz S; Streten C; Parry DL; McGuinness KA; Lu P; Gibb KS
    J Environ Radioact; 2015 Nov; 149():121-8. PubMed ID: 26233650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RADON CONCENTRATION IN THE AREA OF WASTE ROCK DUMPS, BROD, CR-CASE STUDY.
    Thinova L; Bican R; Fronka A; Johnova K; Solc J; Vosahlik J
    Radiat Prot Dosimetry; 2017 Nov; 177(1-2):149-154. PubMed ID: 28981883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radon exhalation rate and uranium estimation in rock samples from Bihar uranium and copper mines using the SSNTD technique.
    Singh AK; Sengupta D; Prasad R
    Appl Radiat Isot; 1999 Jul; 51(1):107-13. PubMed ID: 10376323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radon Flux Measurement System.
    Caffrey EA; Mangini CD; Rood AS; Grogan HA; Till JE
    Health Phys; 2023 Sep; 125(3):232-237. PubMed ID: 37459468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the radon exhalation rate from a gold mine tailings dump by measuring the gamma radiation.
    Ongori JN; Lindsay R; Newman RT; Maleka PP
    J Environ Radioact; 2015 Feb; 140():16-24. PubMed ID: 25461511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.