These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32056953)

  • 1. Cellular sensing platform with enhanced sensitivity based on optogenetic modulation of cell homeostasis.
    Gheorghiu M; Stănică L; Ghinia Tegla MG; Polonschii C; Bratu D; Popescu O; Badea T; Gheorghiu E
    Biosens Bioelectron; 2020 Apr; 154():112003. PubMed ID: 32056953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Cellular Reactivity for Enhanced Cell-Based Biosensing.
    Gheorghiu M; Stanica L; Polonschii C; David S; Ruckenstein A; Popescu O; Badea T; Gheorghiu E
    Anal Chem; 2020 Jan; 92(1):806-814. PubMed ID: 31751507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Optogenetic-Based Biosensing and Related Biomaterials.
    Gheorghiu M; Polonschii C; Popescu O; Gheorghiu E
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization and Manipulation of Intracellular Signaling.
    Goto Y; Kondo Y; Aoki K
    Adv Exp Med Biol; 2021; 1293():225-234. PubMed ID: 33398816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins.
    Inoue K
    Adv Exp Med Biol; 2021; 1293():89-126. PubMed ID: 33398809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic approaches for understanding homeostatic and degenerative processes in Drosophila.
    Lim WK; Kaur P; Huang H; Jo RS; Ramamoorthy A; Ng LF; Suresh J; Maisha FI; Mathuru AS; Tolwinski NS
    Cell Mol Life Sci; 2021 Aug; 78(16):5865-5880. PubMed ID: 34232330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Aspect Ratio Fin-Ion Sensitive Field Effect Transistor: Compromises toward Better Electrochemical Biosensing.
    Rollo S; Rani D; Leturcq R; Olthuis W; Pascual García C
    Nano Lett; 2019 May; 19(5):2879-2887. PubMed ID: 31014066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling.
    Inaba H; Miao Q; Nakata T
    J Biol Chem; 2021; 296():100290. PubMed ID: 33453281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic Strategies for Optimizing the Performance of Phospholipids Biosensors.
    Yao Y; Lou X; Jin L; Sun W; Liu J; Chen Y; Cheng S; Zhao T; Ke S; Zhang L; Xu Y; He L; Li H
    Adv Sci (Weinh); 2024 Sep; 11(36):e2403026. PubMed ID: 39073033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IPG-based field potential measurement of cultured cardiomyocytes for optogenetic applications.
    Wang TW; Sung YL; Chu HW; Lin SF
    Biosens Bioelectron; 2021 May; 179():113060. PubMed ID: 33571936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
    Brothers MC; DeBrosse M; Grigsby CC; Naik RR; Hussain SM; Heikenfeld J; Kim SS
    Acc Chem Res; 2019 Feb; 52(2):297-306. PubMed ID: 30688433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved sensitive assay for the detection of PSP toxins with neuroblastoma cell-based impedance biosensor.
    Zou L; Wu C; Wang Q; Zhou J; Su K; Li H; Hu N; Wang P
    Biosens Bioelectron; 2015 May; 67():458-64. PubMed ID: 25223551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Stimulation of Type I GAD65
    Baumer-Harrison C; Raymond MA; Myers TA; Sussman KM; Rynberg ST; Ugartechea AP; Lauterbach D; Mast TG; Breza JM
    J Neurosci; 2020 Oct; 40(41):7795-7810. PubMed ID: 32878902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing label-free biosensors for pharmacological screening with cell-based functional assays.
    Peters MF; Vaillancourt F; Heroux M; Valiquette M; Scott CW
    Assay Drug Dev Technol; 2010 Apr; 8(2):219-27. PubMed ID: 20085460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.