These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32057046)

  • 1. Effects of temperature and grain size on deformation of polycrystalline copper-graphene nanolayered composites.
    Ma Y; Zhang S; Xu Y; Liu X; Luo SN
    Phys Chem Chem Phys; 2020 Feb; 22(8):4741-4748. PubMed ID: 32057046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competing roles of interfaces and matrix grain size in the deformation and failure of polycrystalline Cu-graphene nanolayered composites under shear loading.
    Zhang S; Xu Y; Liu X; Luo SN
    Phys Chem Chem Phys; 2018 Sep; 20(36):23694-23701. PubMed ID: 30191248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading.
    Huang CW; Chang MP; Fang TH
    Beilstein J Nanotechnol; 2021; 12():863-877. PubMed ID: 34476168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusually high flexibility of graphene-Cu nanolayered composites under bending.
    Zhao Y; Liu X; Zhu J; Luo SN
    Phys Chem Chem Phys; 2019 Aug; 21(31):17393-17399. PubMed ID: 31359012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites.
    Kim Y; Lee J; Yeom MS; Shin JW; Kim H; Cui Y; Kysar JW; Hone J; Jung Y; Jeon S; Han SM
    Nat Commun; 2013; 4():2114. PubMed ID: 23820590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial anti-fatigue effect in graphene-copper nanolayered composites under cyclic shear loading.
    Liu X; Cai J; Luo SN
    Phys Chem Chem Phys; 2018 Mar; 20(11):7875-7884. PubMed ID: 29509205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Study on Dislocation Mechanisms of Toughening in Cu-Graphene Nanolayered Composite.
    Lee S; Ghaffarian H; Kim W; Lee T; Han SM; Ryu S; Oh SH
    Nano Lett; 2022 Jan; 22(1):188-195. PubMed ID: 34941273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression.
    Weng S; Ning H; Fu T; Hu N; Zhao Y; Huang C; Peng X
    Sci Rep; 2018 Feb; 8(1):3089. PubMed ID: 29449626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Effect of Grain Boundaries on the Mechanical Properties of Epoxy/Graphene Composites.
    Ding Q; Ding N; Chen X; Guo W; Zaïri F
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanograin size effects on the strength of biphase nanolayered composites.
    Huang S; Beyerlein IJ; Zhou C
    Sci Rep; 2017 Sep; 7(1):11251. PubMed ID: 28900108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Plastic Deformation Mechanism in Nano-Polycrystalline Al/Mg Layered Composites: A Molecular Dynamics Study.
    Li Z; Shen T; Hu X; Zhang L; Jia X; Li J; Zhang C
    Nanomaterials (Basel); 2024 Jan; 14(1):. PubMed ID: 38202569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic modeling of mechanical properties of polycrystalline graphene.
    Mortazavi B; Cuniberti G
    Nanotechnology; 2014 May; 25(21):215704. PubMed ID: 24785113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic simulations of mechanical response of a heterogeneous fcc/bcc nanolayered composite.
    Xu K; Zhai H; He L; Ni Y; Lu P; Wang G; Liu X
    J Phys Condens Matter; 2022 Jul; 34(38):. PubMed ID: 35839749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Al
    Bian X; Wang A; Xie J; Liu P; Mao Z; Liu Z
    Nanotechnology; 2023 Aug; 34(44):. PubMed ID: 37531938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grain size and hydroxyl-coverage dependent tribology of polycrystalline graphene.
    Chen Y; Wang S; Xie L; Zhu P; Li R; Peng Q
    Nanotechnology; 2019 Sep; 30(38):385701. PubMed ID: 31212265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methodologyfor Molecular Dynamics Simulation of Plastic Deformation of a Nickel/Graphene Composite.
    Krylova KA; Safina LR; Shcherbinin SA; Baimova JA
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanolayered CoCrFeNi/Graphene Composites with High Strength and Crack Resistance.
    Feng X; Cao K; Huang X; Li G; Lu Y
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grain-size dependence of mechanical properties in polycrystalline boron-nitride: a computational study.
    Becton M; Wang X
    Phys Chem Chem Phys; 2015 Sep; 17(34):21894-901. PubMed ID: 26235887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse pseudo Hall-Petch relation in polycrystalline graphene.
    Sha ZD; Quek SS; Pei QX; Liu ZS; Wang TJ; Shenoy VB; Zhang YW
    Sci Rep; 2014 Aug; 4():5991. PubMed ID: 25103818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Strength and Delamination of Graphene/Cu Composites with Different Cu Thicknesses.
    Kim SM; Park WR; Kwon OH
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.