These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32057068)

  • 1. The polarizability response of a glass-forming liquid reveals intrabasin motion and interbasin transitions on a potential energy landscape.
    Bender JS; Zhi M; Cicerone MT
    Soft Matter; 2020 Jun; 16(24):5588-5598. PubMed ID: 32057068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depolarized light scattering versus optical Kerr effect. II. Insight into the dynamic susceptibility of molecular liquids.
    Brodin A; Rössler EA
    J Chem Phys; 2007 Jun; 126(24):244508. PubMed ID: 17614565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of polarizability anisotropy relaxation in aromatic liquids and its connection with local structure.
    Elola MD; Ladanyi BM
    J Phys Chem B; 2006 Aug; 110(31):15525-41. PubMed ID: 16884276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depolarized light scattering versus optical Kerr effect spectroscopy of supercooled liquids: comparative analysis.
    Brodin A; Rössler EA
    J Chem Phys; 2006 Sep; 125(11):114502. PubMed ID: 16999485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean-square-displacement distribution in crystals and glasses: An analysis of the intrabasin dynamics.
    Flores-Ruiz HM; Naumis GG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041503. PubMed ID: 22680479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing Polarizability Models for the Simulation of Low-Frequency Raman Spectra of Benzene.
    Bender JS; Coasne B; Fourkas JT
    J Phys Chem B; 2015 Jul; 119(29):9345-58. PubMed ID: 25397584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE).
    Hunt NT; Jaye AA; Meech SR
    Phys Chem Chem Phys; 2007 Jun; 9(18):2167-80. PubMed ID: 17487314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Kerr-effect study of trans- and cis-1,2-dichloroethene: liquid-liquid transition or super-Arrhenius relaxation.
    Turton DA; Martin DF; Wynne K
    Phys Chem Chem Phys; 2010 Apr; 12(16):4191-200. PubMed ID: 20379512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal disconnectivity of the energy landscape in glassy systems.
    Lempesis N; Boulougouris GC; Theodorou DN
    J Chem Phys; 2013 Mar; 138(12):12A545. PubMed ID: 23556796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature- and solvation-dependent dynamics of liquid sulfur dioxide studied through the ultrafast optical Kerr effect.
    Jaye AA; Hunt NT; Meech SR
    J Chem Phys; 2006 Jan; 124(2):024506. PubMed ID: 16422610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport.
    Heuer A
    J Phys Condens Matter; 2008 Sep; 20(37):373101. PubMed ID: 21694408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientational dynamics in a lyotropic room temperature ionic liquid.
    Sturlaugson AL; Arima AY; Bailey HE; Fayer MD
    J Phys Chem B; 2013 Nov; 117(47):14775-84. PubMed ID: 24171452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why does the intermolecular dynamics of liquid biphenyl so closely resemble that of liquid benzene? Molecular dynamics simulation of the optical-Kerr-effect spectra.
    Tao G; Stratt RM
    J Phys Chem B; 2006 Jan; 110(2):976-87. PubMed ID: 16471632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a discotic liquid crystal in the isotropic phase.
    Li J; Fruchey K; Fayer MD
    J Chem Phys; 2006 Nov; 125(19):194901. PubMed ID: 17129161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Harmonic and Gaussian Approximations in the Potential Energy Landscape Formalism for Quantum Liquids.
    Zhou Y; Lopez GE; Giovambattista N
    J Chem Theory Comput; 2024 Mar; 20(5):1847-1861. PubMed ID: 38323779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape.
    Banerjee S; Dasgupta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermolecular vibrations and fast relaxations in supercooled ionic liquids.
    Ribeiro MC
    J Chem Phys; 2011 Jun; 134(24):244507. PubMed ID: 21721643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential energy landscape and mechanisms of diffusion in liquids.
    Keyes T; Chowdhary J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041106. PubMed ID: 12005805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boson peak in supercooled liquids: time domain observations and mode coupling theory.
    Cang H; Li J; Andersen HC; Fayer MD
    J Chem Phys; 2005 Aug; 123(6):64508. PubMed ID: 16122327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.