These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32057113)

  • 1. Objective assessment of automatic language comprehension mechanisms in the brain: Novel E/MEG paradigm.
    Hyder R; Højlund A; Jensen M; Østergaard K; Shtyrov Y
    Psychophysiology; 2020 May; 57(5):e13543. PubMed ID: 32057113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-free auditory EEG paradigm for probing multiple levels of speech processing in the brain.
    Gansonre C; Højlund A; Leminen A; Bailey C; Shtyrov Y
    Psychophysiology; 2018 Nov; 55(11):e13216. PubMed ID: 30101984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech comprehension across time, space, frequency, and age: MEG-MVPA classification of intertrial phase coherence.
    Jensen M; Hyder R; Westner BU; Højlund A; Shtyrov Y
    Neuropsychologia; 2023 Sep; 188():108602. PubMed ID: 37270028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attention to language: novel MEG paradigm for registering involuntary language processing in the brain.
    Shtyrov Y; Smith ML; Horner AJ; Henson R; Nathan PJ; Bullmore ET; Pulvermüller F
    Neuropsychologia; 2012 Sep; 50(11):2605-16. PubMed ID: 22820635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of electrophysiological responses to semantic and syntactic anomalies in language comprehension with MEG.
    Kielar A; Panamsky L; Links KA; Meltzer JA
    Neuroimage; 2015 Jan; 105():507-24. PubMed ID: 25463470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural source dynamics of brain responses to continuous stimuli: Speech processing from acoustics to comprehension.
    Brodbeck C; Presacco A; Simon JZ
    Neuroimage; 2018 May; 172():162-174. PubMed ID: 29366698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural dynamics of semantic composition.
    Lyu B; Choi HS; Marslen-Wilson WD; Clarke A; Randall B; Tyler LK
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21318-21327. PubMed ID: 31570590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linguistic Structure and Meaning Organize Neural Oscillations into a Content-Specific Hierarchy.
    Kaufeld G; Bosker HR; Ten Oever S; Alday PM; Meyer AS; Martin AE
    J Neurosci; 2020 Dec; 40(49):9467-9475. PubMed ID: 33097640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking speech comprehension in space and time.
    Pulvermüller F; Shtyrov Y; Ilmoniemi RJ; Marslen-Wilson WD
    Neuroimage; 2006 Jul; 31(3):1297-305. PubMed ID: 16556504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between syntax and semantics during sentence comprehension: ERP effects of combining syntactic and semantic violations.
    Hagoort P
    J Cogn Neurosci; 2003 Aug; 15(6):883-99. PubMed ID: 14511541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hearing and seeing meaning in noise: Alpha, beta, and gamma oscillations predict gestural enhancement of degraded speech comprehension.
    Drijvers L; Özyürek A; Jensen O
    Hum Brain Mapp; 2018 May; 39(5):2075-2087. PubMed ID: 29380945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Language in context: Characterizing the comprehension of referential expressions with MEG.
    Brodbeck C; Pylkkänen L
    Neuroimage; 2017 Feb; 147():447-460. PubMed ID: 27989776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of semantic and syntactic context constraints on lexical selection and integration in spoken-word comprehension as revealed by ERPs.
    van den Brink D; Hagoort P
    J Cogn Neurosci; 2004; 16(6):1068-84. PubMed ID: 15298793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of five fMRI protocols for mapping speech comprehension systems.
    Binder JR; Swanson SJ; Hammeke TA; Sabsevitz DS
    Epilepsia; 2008 Dec; 49(12):1980-97. PubMed ID: 18513352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alignment of alpha-band desynchronization with syntactic structure predicts successful sentence comprehension.
    Vassileiou B; Meyer L; Beese C; Friederici AD
    Neuroimage; 2018 Jul; 175():286-296. PubMed ID: 29627592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural correlates of bimodal speech and gesture comprehension.
    Kelly SD; Kravitz C; Hopkins M
    Brain Lang; 2004 Apr; 89(1):253-60. PubMed ID: 15010257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Neural Time Course of Semantic Ambiguity Resolution in Speech Comprehension.
    MacGregor LJ; Rodd JM; Gilbert RA; Hauk O; Sohoglu E; Davis MH
    J Cogn Neurosci; 2020 Mar; 32(3):403-425. PubMed ID: 31682564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural responses to the production and comprehension of syntax in identical utterances.
    Indefrey P; Hellwig F; Herzog H; Seitz RJ; Hagoort P
    Brain Lang; 2004 May; 89(2):312-9. PubMed ID: 15068913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding the Cortical Dynamics of Sound-Meaning Mapping.
    Kocagoncu E; Clarke A; Devereux BJ; Tyler LK
    J Neurosci; 2017 Feb; 37(5):1312-1319. PubMed ID: 28028201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-pass neocortical processing of spoken language takes only 30 msec: Electrophysiological evidence.
    Shtyrov Y; Lenzen M
    Cogn Neurosci; 2017 Jan; 8(1):24-38. PubMed ID: 26919206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.