These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32057185)

  • 21. Surface-Engineered Black Niobium Oxide@Graphene Nanosheets for High-Performance Sodium-/Potassium-Ion Full Batteries.
    Tong Z; Yang R; Wu S; Shen D; Jiao T; Zhang K; Zhang W; Lee CS
    Small; 2019 Jul; 15(28):e1901272. PubMed ID: 31165571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sodium-Based Dual-Ion Battery Based on the Organic Anode and Ionic Liquid Electrolyte.
    Wu H; Hu T; Chang S; Li L; Yuan W
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44254-44265. PubMed ID: 34519196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rechargeable Room-Temperature Na-CO2 Batteries.
    Hu X; Sun J; Li Z; Zhao Q; Chen C; Chen J
    Angew Chem Int Ed Engl; 2016 May; 55(22):6482-6. PubMed ID: 27089434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a High-Performance Anode for Sodium-Ion Batteries.
    Cao T; Lv W; Zhang SW; Zhang J; Lin Q; Chen X; He Y; Kang FY; Yang QH
    Chemistry; 2017 Nov; 23(65):16586-16592. PubMed ID: 28921698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Superior Na3 V2 (PO4 )3 -Based Nanocomposite Enhanced by Both N-Doped Coating Carbon and Graphene as the Cathode for Sodium-Ion Batteries.
    Guo JZ; Wu XL; Wan F; Wang J; Zhang XH; Wang RS
    Chemistry; 2015 Nov; 21(48):17371-8. PubMed ID: 26481446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospun P2-type Na(2/3)(Fe(1/2)Mn(1/2))O2 hierarchical nanofibers as cathode material for sodium-ion batteries.
    Kalluri S; Seng KH; Pang WK; Guo Z; Chen Z; Liu HK; Dou SX
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8953-8. PubMed ID: 24905950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode.
    Hasa I; Hassoun J; Sun YK; Scrosati B
    Chemphyschem; 2014 Jul; 15(10):2152-5. PubMed ID: 24737749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries.
    Niu YB; Guo YJ; Yin YX; Zhang SY; Wang T; Wang P; Xin S; Guo YG
    Adv Mater; 2020 Aug; 32(33):e2001419. PubMed ID: 32627877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries.
    Deng W; Shen Y; Qian J; Cao Y; Yang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Capacity Prismatic Type Layered Electrode with Anionic Redox Activity as an Efficient Cathode Material and PVdF/SiO
    Ponnaiah A; Rengapillai S; Karuppiah D; Marimuthu S; Liu WR; Huang CH
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32188042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal-ion batteries meet supercapacitors: high capacity and high rate capability rechargeable batteries with organic cathodes and a Na/K alloy anode.
    Kapaev RR; Obrezkov FA; Stevenson KJ; Troshin PA
    Chem Commun (Camb); 2019 Sep; 55(78):11758-11761. PubMed ID: 31513192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.
    Huang Y; Fang C; Zeng R; Liu Y; Zhang W; Wang Y; Liu Q; Huang Y
    ChemSusChem; 2017 Dec; 10(23):4704-4708. PubMed ID: 28891155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF
    Sun HH; Hwang JY; Yoon CS; Heller A; Mullins CB
    ACS Nano; 2018 Dec; 12(12):12912-12922. PubMed ID: 30475595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries.
    Peng M; Li B; Yan H; Zhang D; Wang X; Xia D; Guo G
    Angew Chem Int Ed Engl; 2015 May; 54(22):6452-6. PubMed ID: 25864686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Supported CoP Nanorod Arrays Grafted on Stainless Steel as an Advanced Integrated Anode for Stable and Long-Life Lithium-Ion Batteries.
    Xu X; Liu J; Hu R; Liu J; Ouyang L; Zhu M
    Chemistry; 2017 Apr; 23(22):5198-5204. PubMed ID: 28261892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium-Rich Ferric Pyrophosphate Cathode for Stationary Room-Temperature Sodium-Ion Batteries.
    Shen B; Xu M; Niu Y; Han J; Lu S; Jiang J; Li Y; Dai C; Hu L; Li C
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):502-508. PubMed ID: 29231706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current computational trends in polyanionic cathode materials for Li and Na batteries.
    Chakraborty S; Banerjee A; Watcharatharapong T; Araujo RB; Ahuja R
    J Phys Condens Matter; 2018 Jul; 30(28):283003. PubMed ID: 29932053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progress on Fe-Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium-Ion Batteries.
    Yang W; Liu Q; Zhao Y; Mu D; Tan G; Gao H; Li L; Chen R; Wu F
    Small Methods; 2022 Sep; 6(9):e2200555. PubMed ID: 35780504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.