These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32057292)

  • 21. Hippocampal CA1 replay becomes less prominent but more rigid without inputs from medial entorhinal cortex.
    Chenani A; Sabariego M; Schlesiger MI; Leutgeb JK; Leutgeb S; Leibold C
    Nat Commun; 2019 Mar; 10(1):1341. PubMed ID: 30902981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oscillation-Driven Memory Encoding, Maintenance, and Recall in an Entorhinal-Hippocampal Circuit Model.
    Kurikawa T; Mizuseki K; Fukai T
    Cereb Cortex; 2021 Mar; 31(4):2038-2057. PubMed ID: 33230536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bat and rat neurons differ in theta-frequency resonance despite similar coding of space.
    Heys JG; MacLeod KM; Moss CF; Hasselmo ME
    Science; 2013 Apr; 340(6130):363-7. PubMed ID: 23599495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurophysiological signatures of temporal coordination between retrosplenial cortex and the hippocampal formation.
    Alexander AS; Rangel LM; Tingley D; Nitz DA
    Behav Neurosci; 2018 Oct; 132(5):453-468. PubMed ID: 30070554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theta resonance and synaptic modulation scale activity patterns in the medial entorhinal cortex stellate cells.
    Katyare N; Sikdar SK
    Ann N Y Acad Sci; 2020 Oct; 1478(1):92-112. PubMed ID: 32794193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systemic administration of two different anxiolytic drugs decreases local field potential theta frequency in the medial entorhinal cortex without affecting grid cell firing fields.
    Monaghan CK; Chapman GW; Hasselmo ME
    Neuroscience; 2017 Nov; 364():60-70. PubMed ID: 28890051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The entorhinal grid map is discretized.
    Stensola H; Stensola T; Solstad T; Frøland K; Moser MB; Moser EI
    Nature; 2012 Dec; 492(7427):72-8. PubMed ID: 23222610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronization of neural oscillations as a possible mechanism underlying episodic memory: a study of theta rhythm in the hippocampus.
    Yamaguchi Y; Aota Y; Sato N; Wagatsuma H; Wu Z
    J Integr Neurosci; 2004 Jun; 3(2):143-57. PubMed ID: 15285052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hippocampus-independent phase precession in entorhinal grid cells.
    Hafting T; Fyhn M; Bonnevie T; Moser MB; Moser EI
    Nature; 2008 Jun; 453(7199):1248-52. PubMed ID: 18480753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling of prefrontal gamma amplitude and theta phase is strengthened in trace eyeblink conditioning.
    Shearkhani O; Takehara-Nishiuchi K
    Neurobiol Learn Mem; 2013 Feb; 100():117-26. PubMed ID: 23267870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats.
    Mitchell SJ; Rawlins JN; Steward O; Olton DS
    J Neurosci; 1982 Mar; 2(3):292-302. PubMed ID: 7062110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple Running Speed Signals in Medial Entorhinal Cortex.
    Hinman JR; Brandon MP; Climer JR; Chapman GW; Hasselmo ME
    Neuron; 2016 Aug; 91(3):666-79. PubMed ID: 27427460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex.
    Brun VH; Solstad T; Kjelstrup KB; Fyhn M; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1200-12. PubMed ID: 19021257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase reorganization leads to transient β-LFP spatial wave patterns in motor cortex during steady-state movement preparation.
    Rule ME; Vargas-Irwin C; Donoghue JP; Truccolo W
    J Neurophysiol; 2018 Jun; 119(6):2212-2228. PubMed ID: 29442553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Respiration-Coupled Rhythm in the Rat Hippocampus Independent of Theta and Slow Oscillations.
    Lockmann AL; Laplagne DA; Leão RN; Tort AB
    J Neurosci; 2016 May; 36(19):5338-52. PubMed ID: 27170130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics.
    Navratilova Z; Giocomo LM; Fellous JM; Hasselmo ME; McNaughton BL
    Hippocampus; 2012 Apr; 22(4):772-89. PubMed ID: 21484936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro.
    Roth FC; Beyer KM; Both M; Draguhn A; Egorov AV
    Hippocampus; 2016 Dec; 26(12):1493-1508. PubMed ID: 27479916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational modeling of entorhinal cortex.
    Hasselmo ME; Fransen E; Dickson C; Alonso AA
    Ann N Y Acad Sci; 2000 Jun; 911():418-46. PubMed ID: 10911889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple-unit recordings during slow field-potential shifts in low-[Ca2+]0 solutions in rat hippocampal and cortical slices.
    Patrylo PR; Kuhn AJ; Schweitzer JS; Dudek FE
    Neuroscience; 1996 Sep; 74(1):107-18. PubMed ID: 8843081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inducing theta oscillations in the entorhinal hippocampal network in vitro.
    Gu Z; Yakel JL
    Brain Struct Funct; 2017 Mar; 222(2):943-955. PubMed ID: 27369465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.