These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 32057309)

  • 1. Translational validity and implications of pharmacotherapies in preclinical models of Down syndrome.
    Rueda N; Flórez J; Dierssen M; Martínez-Cué C
    Prog Brain Res; 2020; 251():245-268. PubMed ID: 32057309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer's disease phenotypes.
    García-Cerro S; Rueda N; Vidal V; Lantigua S; Martínez-Cué C
    Neurobiol Dis; 2017 Oct; 106():76-88. PubMed ID: 28647555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of improved human cerebral organoids from single copy DYRK1A knockout induced pluripotent stem cells in trisomy 21: hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome.
    Çağlayan ES
    Cell Biol Int; 2016 Dec; 40(12):1256-1270. PubMed ID: 27743462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty Acids: A Safe Tool for Improving Neurodevelopmental Alterations in Down Syndrome?
    Martínez-Cué C; Bartesaghi R
    Nutrients; 2022 Jul; 14(14):. PubMed ID: 35889838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome.
    Hamlett ED; Boger HA; Ledreux A; Kelley CM; Mufson EJ; Falangola MF; Guilfoyle DN; Nixon RA; Patterson D; Duval N; Granholm AC
    Curr Alzheimer Res; 2016; 13(1):35-52. PubMed ID: 26391050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using mouse models to understand Alzheimer's disease mechanisms in the context of trisomy of chromosome 21.
    Cannavo C; Tosh J; Fisher EMC; Wiseman FK
    Prog Brain Res; 2020; 251():181-208. PubMed ID: 32057307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal Choline Supplementation: A Potential Prenatal Treatment for Down Syndrome and Alzheimer's Disease.
    Strupp BJ; Powers BE; Velazquez R; Ash JA; Kelley CM; Alldred MJ; Strawderman M; Caudill MA; Mufson EJ; Ginsberg SD
    Curr Alzheimer Res; 2016; 13(1):97-106. PubMed ID: 26391046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations.
    Gardiner KJ
    Drug Des Devel Ther; 2015; 9():103-25. PubMed ID: 25552901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic linkage in the mouse of genes involved in Down syndrome and Alzheimer's disease in man.
    Reeves RH; Robakis NK; Oster-Granite ML; Wisniewski HM; Coyle JT; Gearhart JD
    Brain Res; 1987 Sep; 388(3):215-21. PubMed ID: 2960420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-IL17 treatment ameliorates Down syndrome phenotypes in mice.
    Rueda N; Vidal V; García-Cerro S; Narcís JO; Llorens-Martín M; Corrales A; Lantigua S; Iglesias M; Merino J; Merino R; Martínez-Cué C
    Brain Behav Immun; 2018 Oct; 73():235-251. PubMed ID: 29758264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights from mouse models to understand neurodegeneration in Down syndrome.
    Fillat C; Dierssen M; de Lagrán MM; Altafaj X
    CNS Neurol Disord Drug Targets; 2010 Aug; 9(4):429-38. PubMed ID: 20522013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities.
    Rueda N; Flórez J; Martínez-Cué C
    Neural Plast; 2012; 2012():584071. PubMed ID: 22685678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Memory and Cognition in Individuals with Down Syndrome.
    Rafii MS
    CNS Drugs; 2016 Jul; 30(7):567-73. PubMed ID: 27272473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Down syndrome: genes, model systems, and progress towards pharmacotherapies and clinical trials for cognitive deficits.
    Busciglio J; Capone G; O'Bryan J; Gardiner KJ
    Cytogenet Genome Res; 2013; 141(4):260-71. PubMed ID: 24008277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is it possible to improve neurodevelopmental abnormalities in Down syndrome?
    Bartesaghi R; Guidi S; Ciani E
    Rev Neurosci; 2011; 22(4):419-55. PubMed ID: 21819263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Molecular Mechanism Underlying Abnormal Differentiation of Neural Progenitor Cells in the Developing Down Syndrome Brain].
    Kurabayashi N; Sanada K
    Yakugaku Zasshi; 2017; 137(7):795-800. PubMed ID: 28674289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Integration-Free Induced Pluripotent Stem Cells from Urine-Derived Cells Isolated from Individuals with Down Syndrome.
    M Lee Y; Zampieri BL; Scott-McKean JJ; Johnson MW; Costa ACS
    Stem Cells Transl Med; 2017 Jun; 6(6):1465-1476. PubMed ID: 28371411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging and intellectual disability: insights from mouse models of Down syndrome.
    Ruparelia A; Pearn ML; Mobley WC
    Dev Disabil Res Rev; 2013; 18(1):43-50. PubMed ID: 23949828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DYRK1A: a potential drug target for multiple Down syndrome neuropathologies.
    Becker W; Soppa U; Tejedor FJ
    CNS Neurol Disord Drug Targets; 2014 Feb; 13(1):26-33. PubMed ID: 24152332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Placental development and function in trisomy 21 and mouse models of Down syndrome: Clues for studying mechanisms underlying atypical development.
    Adams AD; Guedj F; Bianchi DW
    Placenta; 2020 Jan; 89():58-66. PubMed ID: 31683073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.