These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 32058150)
1. Magnitude and drivers of integrated fluvial network greenhouse gas emissions across the boreal landscape in Québec. Hutchins RHS; Casas-Ruiz JP; Prairie YT; Del Giorgio PA Water Res; 2020 Apr; 173():115556. PubMed ID: 32058150 [TBL] [Abstract][Full Text] [Related]
2. Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Campeau A; Del Giorgio PA Glob Chang Biol; 2014 Apr; 20(4):1075-88. PubMed ID: 24273093 [TBL] [Abstract][Full Text] [Related]
4. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625 [TBL] [Abstract][Full Text] [Related]
5. Inland waters and their role in the carbon cycle of Alaska. Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236 [TBL] [Abstract][Full Text] [Related]
6. Catchment-scale carbon fluxes and processes in major rivers of northern Québec, Canada. de Melo ML; Teodoru CR; Del Giorgio PA Sci Total Environ; 2023 May; 873():162308. PubMed ID: 36801415 [TBL] [Abstract][Full Text] [Related]
7. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions. Rasilo T; Prairie YT; Del Giorgio PA Glob Chang Biol; 2015 Mar; 21(3):1124-39. PubMed ID: 25220765 [TBL] [Abstract][Full Text] [Related]
8. The impact of water management practices on subtropical pasture methane emissions and ecosystem service payments. Chamberlain SD; Groffman PM; Boughton EH; Gomez-Casanovas N; DeLucia EH; Bernacchi CJ; Sparks JP Ecol Appl; 2017 Jun; 27(4):1199-1209. PubMed ID: 28140494 [TBL] [Abstract][Full Text] [Related]
9. Environmental controllers for carbon emission and concentration patterns in Siberian rivers during different seasons. Krickov IV; Lim AG; Shirokova LS; Korets MА; Karlsson J; Pokrovsky OS Sci Total Environ; 2023 Feb; 859(Pt 1):160202. PubMed ID: 36395838 [TBL] [Abstract][Full Text] [Related]
10. Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances. Panneer Selvam B; Natchimuthu S; Arunachalam L; Bastviken D Glob Chang Biol; 2014 Nov; 20(11):3397-407. PubMed ID: 24623552 [TBL] [Abstract][Full Text] [Related]
11. Net emissions of CH4 and CO2 in Alaska: implications for the region's greenhouse gas budget. Zhuang Q; Melillo JM; McGuire AD; Kicklighter DW; Prinn RG; Steudler PA; Felzer BS; Hu S Ecol Appl; 2007 Jan; 17(1):203-12. PubMed ID: 17479846 [TBL] [Abstract][Full Text] [Related]
12. Fluvial CO Leng P; Li Z; Zhang Q; Li F; Koschorreck M Environ Pollut; 2022 Jun; 303():119125. PubMed ID: 35283204 [TBL] [Abstract][Full Text] [Related]
13. Evasion of CO2 from streams - the dominant component of the carbon export through the aquatic conduit in a boreal landscape. Wallin MB; Grabs T; Buffam I; Laudon H; Agren Å; Öquist MG; Bishop K Glob Chang Biol; 2013 Mar; 19(3):785-97. PubMed ID: 23504836 [TBL] [Abstract][Full Text] [Related]
14. Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget. Watts JD; Farina M; Kimball JS; Schiferl LD; Liu Z; Arndt KA; Zona D; Ballantyne A; Euskirchen ES; Parmentier FW; Helbig M; Sonnentag O; Tagesson T; Rinne J; Ikawa H; Ueyama M; Kobayashi H; Sachs T; Nadeau DF; Kochendorfer J; Jackowicz-Korczynski M; Virkkala A; Aurela M; Commane R; Byrne B; Birch L; Johnson MS; Madani N; Rogers B; Du J; Endsley A; Savage K; Poulter B; Zhang Z; Bruhwiler LM; Miller CE; Goetz S; Oechel WC Glob Chang Biol; 2023 Apr; 29(7):1870-1889. PubMed ID: 36647630 [TBL] [Abstract][Full Text] [Related]
15. The Net Landscape Carbon Balance-Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden. Chi J; Nilsson MB; Laudon H; Lindroth A; Wallerman J; Fransson JES; Kljun N; Lundmark T; Ottosson Löfvenius M; Peichl M Glob Chang Biol; 2020 Apr; 26(4):2353-2367. PubMed ID: 31912589 [TBL] [Abstract][Full Text] [Related]
16. Estimating greenhouse gas emissions at the soil-atmosphere interface in forested watersheds of the US Northeast. Gomez J; Vidon P; Gross J; Beier C; Caputo J; Mitchell M Environ Monit Assess; 2016 May; 188(5):295. PubMed ID: 27085717 [TBL] [Abstract][Full Text] [Related]
17. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Baah-Acheamfour M; Carlyle CN; Lim SS; Bork EW; Chang SX Sci Total Environ; 2016 Nov; 571():1115-27. PubMed ID: 27450260 [TBL] [Abstract][Full Text] [Related]
18. Downstream carbon transport and surface CO Lv S; Yu Q; Wang L; Deng C; Liu L Sci Total Environ; 2023 Aug; 884():163839. PubMed ID: 37137363 [TBL] [Abstract][Full Text] [Related]
19. [Review of CO Wang XF; Yuan XZ; Chen H; He YX; Luo Z; Liu L; He ZY Huan Jing Ke Xue; 2017 Dec; 38(12):5352-5366. PubMed ID: 29964600 [TBL] [Abstract][Full Text] [Related]
20. Net landscape carbon balance of a tropical savanna: Relative importance of fire and aquatic export in offsetting terrestrial production. Duvert C; Hutley LB; Beringer J; Bird MI; Birkel C; Maher DT; Northwood M; Rudge M; Setterfield SA; Wynn JG Glob Chang Biol; 2020 Oct; 26(10):5899-5913. PubMed ID: 32686242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]