These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32058241)

  • 21. Enzymatic basis of "hybridity" in thiomarinol biosynthesis.
    Dunn ZD; Wever WJ; Economou NJ; Bowers AA; Li B
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5137-41. PubMed ID: 25726835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Access to Amides from Nitro-Compounds via Aminocarbonylation and Amidation Reactions: A Minireview.
    Barak DS; Batra S
    Chem Rec; 2021 Dec; 21(12):4059-4087. PubMed ID: 34472167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging methods in amide- and peptide-bond formation.
    Bode JW
    Curr Opin Drug Discov Devel; 2006 Nov; 9(6):765-75. PubMed ID: 17117685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection of RNA amide synthases.
    Wiegand TW; Janssen RC; Eaton BE
    Chem Biol; 1997 Sep; 4(9):675-83. PubMed ID: 9331408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic Fluoromethylation as a Tool for ATP-Independent Ligation.
    Peng J; Hughes GR; Müller MM; Seebeck FP
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202312104. PubMed ID: 37955592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-Step Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation.
    Lubberink M; Finnigan W; Schnepel C; Baldwin CR; Turner NJ; Flitsch SL
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202205054. PubMed ID: 35595679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient amide bond formation through a rapid and strong activation of carboxylic acids in a microflow reactor.
    Fuse S; Mifune Y; Takahashi T
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):851-5. PubMed ID: 24402801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery and Mechanistic Understanding of a Lipase from Rhizorhabdus dicambivorans for Efficient Ester Aminolysis in Aromatic Amines.
    Wang J; Huang Z; Xu H; Nian Y; Wu B; He B; Schenk G
    ChemSusChem; 2024 May; 17(9):e202301735. PubMed ID: 38183360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvent-free amide bond formation using a variety of methoxysilanes as coupling agent.
    Lainer T; Czerny F; Haas M
    Org Biomol Chem; 2022 May; 20(18):3717-3720. PubMed ID: 35441639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repurposing amine and carboxylic acid building blocks with an automatable esterification reaction.
    McGrath A; Zhang R; Shafiq K; Cernak T
    Chem Commun (Camb); 2023 Jan; 59(8):1026-1029. PubMed ID: 36598511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines.
    Wang C; Yu HZ; Fu Y; Guo QX
    Org Biomol Chem; 2013 Apr; 11(13):2140-6. PubMed ID: 23381564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct amide coupling of non-activated carboxylic acids and amines catalysed by zirconium(IV) chloride.
    Lundberg H; Tinnis F; Adolfsson H
    Chemistry; 2012 Mar; 18(13):3822-6. PubMed ID: 22368037
    [No Abstract]   [Full Text] [Related]  

  • 33. Amide formation in one pot from carboxylic acids and amines via carboxyl and sulfinyl mixed anhydrides.
    Zambroń BK; Dubbaka SR; Marković D; Moreno-Clavijo E; Vogel P
    Org Lett; 2013 May; 15(10):2550-3. PubMed ID: 23642170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational engineering of amide synthetase enables bioconversion to diverse xiamenmycin derivatives.
    Weng JY; Bu XL; He BB; Cheng Z; Xu J; Da LT; Xu MJ
    Chem Commun (Camb); 2019 Dec; 55(98):14840-14843. PubMed ID: 31768510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.
    Li Y; Gabriele E; Samain F; Favalli N; Sladojevich F; Scheuermann J; Neri D
    ACS Comb Sci; 2016 Aug; 18(8):438-43. PubMed ID: 27314981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of FdmV as an amide synthetase for fredericamycin A biosynthesis in Streptomyces griseus ATCC 43944.
    Chen Y; Wendt-Pienkowski E; Ju J; Lin S; Rajski SR; Shen B
    J Biol Chem; 2010 Dec; 285(50):38853-60. PubMed ID: 20926388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient amidation from carboxylic acids and azides via selenocarboxylates: application to the coupling of amino acids and peptides with azides.
    Wu X; Hu L
    J Org Chem; 2007 Feb; 72(3):765-74. PubMed ID: 17253793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate.
    Nelp MT; Bandarian V
    Angew Chem Int Ed Engl; 2015 Sep; 54(36):10627-9. PubMed ID: 26228534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water.
    Wu LF; Liu Z; Sutherland JD
    Chem Commun (Camb); 2021 Jan; 57(1):73-76. PubMed ID: 33242043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amide bond cleavage: acceleration due to a 1,3-diaxial interaction with a carboxylic acid.
    Gerschler JJ; Wier KA; Hansen DE
    J Org Chem; 2007 Jan; 72(2):654-7. PubMed ID: 17221991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.