These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32058241)

  • 41. XtalFluor-E, an efficient coupling reagent for amidation of carboxylic acids.
    Orliac A; Gomez Pardo D; Bombrun A; Cossy J
    Org Lett; 2013 Feb; 15(4):902-5. PubMed ID: 23383604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MCF-supported boronic acids as efficient catalysts for direct amide condensation of carboxylic acids and amines.
    Gu L; Lim J; Cheong JL; Lee SS
    Chem Commun (Camb); 2014 Jul; 50(53):7017-9. PubMed ID: 24848459
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discovery, characterization and engineering of ligases for amide synthesis.
    Winn M; Rowlinson M; Wang F; Bering L; Francis D; Levy C; Micklefield J
    Nature; 2021 May; 593(7859):391-398. PubMed ID: 34012085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glutathione synthetase homologs encode alpha-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses.
    Li H; Xu H; Graham DE; White RH
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9785-90. PubMed ID: 12909715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering an ATP-dependent D-Ala:D-Ala ligase for synthesizing amino acid amides from amino acids.
    Miki Y; Okazaki S; Asano Y
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):667-675. PubMed ID: 27585794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Well-Defined Pre-Catalysts in Amide and Ester Bond Activation.
    Vemula SR; Chhoun MR; Cook GR
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30634382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase.
    Pai CH; Chiang BY; Ko TP; Chou CC; Chong CM; Yen FJ; Chen S; Coward JK; Wang AH; Lin CH
    EMBO J; 2006 Dec; 25(24):5970-82. PubMed ID: 17124497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immobilized coupling reagents: synthesis of amides/peptides.
    Cherkupally P; Ramesh S; de la Torre BG; Govender T; Kruger HG; Albericio F
    ACS Comb Sci; 2014 Nov; 16(11):579-601. PubMed ID: 25330282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Bis(2-methoxyethyl)amino]sulfur trifluoride, the Deoxo-Fluor reagent: application toward one-flask transformations of carboxylic acids to amides.
    White JM; Tunoori AR; Turunen BJ; Georg GI
    J Org Chem; 2004 Apr; 69(7):2573-6. PubMed ID: 15049661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of isokinetic ratios necessary for equimolar incorporation of carboxylic acids in the solid-phase synthesis of mixture-based combinatorial libraries.
    Acharya AN; Ostresh JM; Houghten RA
    Biopolymers; 2002 Oct; 65(1):32-9. PubMed ID: 12209470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biocatalytic Synthesis of Moclobemide Using the Amide Bond Synthetase McbA Coupled with an ATP Recycling System.
    Petchey MR; Rowlinson B; Lloyd RC; Fairlamb IJS; Grogan G
    ACS Catal; 2020 Apr; 10(8):4659-4663. PubMed ID: 32337091
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 4-methyleneglutamine synthetase: a new amide synthetase present in germinating peanuts.
    Winter HC; Su TZ; Dekker EE
    Biochem Biophys Res Commun; 1983 Mar; 111(2):484-9. PubMed ID: 6838571
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclodextrin-based artificial acyltransferase: substrate-specific catalytic amidation of carboxylic acids in aqueous solvent.
    Kunishima M; Yoshimura K; Morigaki H; Kawamata R; Terao K; Tani S
    J Am Chem Soc; 2001 Oct; 123(43):10760-1. PubMed ID: 11674018
    [No Abstract]   [Full Text] [Related]  

  • 54. Nickel-Catalyzed Esterification of Aliphatic Amides.
    Hie L; Baker EL; Anthony SM; Desrosiers JN; Senanayake C; Garg NK
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):15129-15132. PubMed ID: 27813308
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visible-light-mediated amidation from carboxylic acids and tertiary amines
    Gu C; Wang S; Zhang Q; Xie J
    Chem Commun (Camb); 2022 May; 58(39):5873-5876. PubMed ID: 35470834
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amine Activation: "Inverse" Dipeptide Synthesis and Amide Function Formation through Activated Amino Compounds.
    Tosi E; Campagne JM; de Figueiredo RM
    J Org Chem; 2022 Sep; 87(18):12148-12163. PubMed ID: 36069394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NDTP Mediated Direct Rapid Amide and Peptide Synthesis without Epimerization.
    Li Y; Li J; Bao G; Yu C; Liu Y; He Z; Wang P; Ma W; Xie J; Sun W; Wang R
    Org Lett; 2022 Feb; 24(5):1169-1174. PubMed ID: 34994572
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.
    Lu P; Jackson JJ; Eickhoff JA; Zakarian A
    J Am Chem Soc; 2015 Jan; 137(2):656-9. PubMed ID: 25562717
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amide Bond Activation of Biological Molecules.
    Mahesh S; Tang KC; Raj M
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decarboxylative alkenylation.
    Edwards JT; Merchant RR; McClymont KS; Knouse KW; Qin T; Malins LR; Vokits B; Shaw SA; Bao DH; Wei FL; Zhou T; Eastgate MD; Baran PS
    Nature; 2017 May; 545(7653):213-218. PubMed ID: 28424520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.