These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 32058701)
1. Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry. Cho KC; Clark DJ; Schnaubelt M; Teo GC; Leprevost FDV; Bocik W; Boja ES; Hiltke T; Nesvizhskii AI; Zhang H Anal Chem; 2020 Mar; 92(6):4217-4225. PubMed ID: 32058701 [TBL] [Abstract][Full Text] [Related]
2. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155 [TBL] [Abstract][Full Text] [Related]
4. Enhancing protein discoverability by data independent acquisition assisted by ion mobility mass spectrometry. Nys G; Nix C; Cobraiville G; Servais AC; Fillet M Talanta; 2020 Jun; 213():120812. PubMed ID: 32200919 [TBL] [Abstract][Full Text] [Related]
5. High-throughput, in-depth and estimated absolute quantification of plasma proteome using data-independent acquisition/mass spectrometry ("HIAP-DIA"). Zhou Y; Tan Z; Xue P; Wang Y; Li X; Guan F Proteomics; 2021 Mar; 21(5):e2000264. PubMed ID: 33460299 [TBL] [Abstract][Full Text] [Related]
6. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
8. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the Sensitivity and Reproducibility of Targeted Proteomic Analysis Using Data-Independent Acquisition for Serum and Cerebrospinal Fluid Proteins. Cho KC; Oh S; Wang Y; Rosenthal LS; Na CH; Zhang H J Proteome Res; 2021 Sep; 20(9):4284-4291. PubMed ID: 34384221 [TBL] [Abstract][Full Text] [Related]
10. Label-free absolute protein quantification with data-independent acquisition. He B; Shi J; Wang X; Jiang H; Zhu HJ J Proteomics; 2019 May; 200():51-59. PubMed ID: 30880166 [TBL] [Abstract][Full Text] [Related]
12. A data-independent acquisition (DIA)-based quantification workflow for proteome analysis of 5000 cells. Jiang N; Gao Y; Xu J; Luo F; Zhang X; Chen R J Pharm Biomed Anal; 2022 Jul; 216():114795. PubMed ID: 35489320 [TBL] [Abstract][Full Text] [Related]
13. Use of Hybrid Data-Dependent and -Independent Acquisition Spectral Libraries Empowers Dual-Proteome Profiling. Willems P; Fels U; Staes A; Gevaert K; Van Damme P J Proteome Res; 2021 Feb; 20(2):1165-1177. PubMed ID: 33467856 [TBL] [Abstract][Full Text] [Related]
14. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction. Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167 [TBL] [Abstract][Full Text] [Related]
15. Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis. Prakash A; Peterman S; Ahmad S; Sarracino D; Frewen B; Vogelsang M; Byram G; Krastins B; Vadali G; Lopez M J Proteome Res; 2014 Dec; 13(12):5415-30. PubMed ID: 25244318 [TBL] [Abstract][Full Text] [Related]
16. PulseDIA: Data-Independent Acquisition Mass Spectrometry Using Multi-Injection Pulsed Gas-Phase Fractionation. Cai X; Ge W; Yi X; Sun R; Zhu J; Lu C; Sun P; Zhu T; Ruan G; Yuan C; Liang S; Lyu M; Huang S; Zhu Y; Guo T J Proteome Res; 2021 Jan; 20(1):279-288. PubMed ID: 32975123 [TBL] [Abstract][Full Text] [Related]
17. Data Dependent-Independent Acquisition (DDIA) Proteomics. Guan S; Taylor PP; Han Z; Moran MF; Ma B J Proteome Res; 2020 Aug; 19(8):3230-3237. PubMed ID: 32539411 [TBL] [Abstract][Full Text] [Related]
18. Data-Independent Acquisition Approach to Proteome: A Case Study and a Spectral Library for Mass Spectrometry-Based Investigation of Awasthi K; Kootimole CN; Aravind A; Prasad TSK OMICS; 2022 Mar; 26(3):142-150. PubMed ID: 35099291 [TBL] [Abstract][Full Text] [Related]
19. Quantitative Proteomics Based on Optimized Data-Independent Acquisition in Plasma Analysis. Nigjeh EN; Chen R; Brand RE; Petersen GM; Chari ST; von Haller PD; Eng JK; Feng Z; Yan Q; Brentnall TA; Pan S J Proteome Res; 2017 Feb; 16(2):665-676. PubMed ID: 27995795 [TBL] [Abstract][Full Text] [Related]
20. Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries. Van Puyvelde B; Willems S; Gabriels R; Daled S; De Clerck L; Vande Casteele S; Staes A; Impens F; Deforce D; Martens L; Degroeve S; Dhaenens M Proteomics; 2020 Feb; 20(3-4):e1900306. PubMed ID: 31981311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]