BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32058728)

  • 21. Influence of compression pressure and velocity on tablet sticking.
    Kakimi K; Niwa T; Danjo K
    Chem Pharm Bull (Tokyo); 2010 Dec; 58(12):1565-8. PubMed ID: 21139255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sticking Detection by Repeated Compactions on a Single Tablet.
    Thomas J; Bui P; Zavaliangos A
    AAPS PharmSciTech; 2023 Nov; 24(8):237. PubMed ID: 37989970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.
    Alyami H; Dahmash E; Bowen J; Mohammed AR
    PLoS One; 2017; 12(6):e0178772. PubMed ID: 28609454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of engravings on the sticking of tablets. Investigations with an instrumented upper punch.
    Waimer F; Krumme M; Danz P; Tenter U; Schmidt PC
    Pharm Dev Technol; 1999 Aug; 4(3):369-75. PubMed ID: 10434282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tablet formulation of an active pharmaceutical ingredient with a sticking and filming problem: direct compression and dry granulation evaluations.
    Bejugam NK; Mutyam SK; Shankar GN
    Drug Dev Ind Pharm; 2015 Feb; 41(2):333-41. PubMed ID: 24279424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of quantitative relationships between physicochemical properties of active pharmaceutical ingredients and tensile strength of tablets using a boosted tree.
    Hayashi Y; Oishi T; Shirotori K; Marumo Y; Kosugi A; Kumada S; Hirai D; Takayama K; Onuki Y
    Drug Dev Ind Pharm; 2018 Jul; 44(7):1090-1098. PubMed ID: 29376430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roller compaction: Ribbon splitting and sticking.
    Mahmah O; Adams MJ; Omar CS; Gururajan B; Salman AD
    Int J Pharm; 2019 Mar; 559():156-172. PubMed ID: 30682449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of Air Entrapment in Tableting: An Approximate Solution.
    Zavaliangos A; Katz JM; Daurio D; Johnson M; Pirjanian A; Alvarez-Nunez F
    J Pharm Sci; 2017 Dec; 106(12):3604-3612. PubMed ID: 28919383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel technique for the visualization of tablet punch surfaces: Characterization of surface modification, wear and sticking.
    Al-Karawi C; Kaiser T; Leopold CS
    Int J Pharm; 2017 Sep; 530(1-2):440-454. PubMed ID: 28779987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of punch tip geometry and embossment on the punch tip adherence of a model ibuprofen formulation.
    Roberts M; Ford JL; MacLeod GS; Fell JT; Smith GW; Rowe PH; Dyas AM
    J Pharm Pharmacol; 2004 Jul; 56(7):947-50. PubMed ID: 15233876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of Punch-Sticking Propensity of Celecoxib by Spherical Crystallization via Polymer Assisted Quasi-Emulsion Solvent Diffusion.
    Chen H; Paul S; Xu H; Wang K; Mahanthappa MK; Sun CC
    Mol Pharm; 2020 Apr; 17(4):1387-1396. PubMed ID: 32134675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance.
    Rojas J; Buckner I; Kumar V
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1159-70. PubMed ID: 22966909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microcrystalline cellulose based drug-composite formulation strategy for developing low dose drug tablets.
    Sun WJ; Sun CC
    Int J Pharm; 2020 Jul; 585():119517. PubMed ID: 32526333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of surface roughness and chrome plating of punch tips on the sticking tendencies of model ibuprofen formulations.
    Roberts M; Ford JL; MacLeod GS; Fell JT; Smith GW; Rowe PH
    J Pharm Pharmacol; 2003 Sep; 55(9):1223-8. PubMed ID: 14604465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An investigation into the impact of magnesium stearate on powder feeding during roller compaction.
    Dawes J; Gamble JF; Greenwood R; Robbins P; Tobyn M
    Drug Dev Ind Pharm; 2012 Jan; 38(1):111-22. PubMed ID: 21810064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developing Biologics Tablets: The Effects of Compression on the Structure and Stability of Bovine Serum Albumin and Lysozyme.
    Wei Y; Wang C; Jiang B; Sun CC; Middaugh CR
    Mol Pharm; 2019 Mar; 16(3):1119-1131. PubMed ID: 30698973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.
    Chattoraj S; Sun CC
    J Pharm Sci; 2018 Apr; 107(4):968-974. PubMed ID: 29247737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The surface layer of pharmaceutical compacts: the role of the punch surface and its impact on the mechanical properties of the compacts.
    Mazel V; Busignies V; Diarra H; Reiche I; Tchoreloff P
    Int J Pharm; 2013 Feb; 442(1-2):42-8. PubMed ID: 22902389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the Factors That Control the Quality of Mini-Tablet Compression: Flow, Particle Size, and Tooling Dimension.
    Zhao J; Yin D; Rowe J; Badawy S; Nikfar F; Pandey P
    J Pharm Sci; 2018 Apr; 107(4):1204-1208. PubMed ID: 29233726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.