These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response. Brandner K; Bauer M; Seifert U Phys Rev Lett; 2017 Oct; 119(17):170602. PubMed ID: 29219425 [TBL] [Abstract][Full Text] [Related]
3. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles. Frim AG; DeWeese MR Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204 [TBL] [Abstract][Full Text] [Related]
4. Superconducting-like Heat Current: Effective Cancellation of Current-Dissipation Trade-Off by Quantum Coherence. Tajima H; Funo K Phys Rev Lett; 2021 Nov; 127(19):190604. PubMed ID: 34797134 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines. Miller HJD; Mohammady MH; Perarnau-Llobet M; Guarnieri G Phys Rev Lett; 2021 May; 126(21):210603. PubMed ID: 34114847 [TBL] [Abstract][Full Text] [Related]
6. Quantum mechanical bound for efficiency of quantum Otto heat engine. Park JM; Lee S; Chun HM; Noh JD Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873 [TBL] [Abstract][Full Text] [Related]
7. Geometric Optimisation of Quantum Thermodynamic Processes. Abiuso P; Miller HJD; Perarnau-Llobet M; Scandi M Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286845 [TBL] [Abstract][Full Text] [Related]
8. Universal Trade-Off Relation between Power and Efficiency for Heat Engines. Shiraishi N; Saito K; Tasaki H Phys Rev Lett; 2016 Nov; 117(19):190601. PubMed ID: 27858428 [TBL] [Abstract][Full Text] [Related]
9. Efficiency at and near maximum power of low-dissipation heat engines. Holubec V; Ryabov A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665 [TBL] [Abstract][Full Text] [Related]
10. Optimal performance of periodically driven, stochastic heat engines under limited control. Bauer M; Brandner K; Seifert U Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic uncertainty relation in quantum thermoelectric junctions. Liu J; Segal D Phys Rev E; 2019 Jun; 99(6-1):062141. PubMed ID: 31330645 [TBL] [Abstract][Full Text] [Related]
12. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine. Kheradsoud S; Dashti N; Misiorny M; Potts PP; Splettstoesser J; Samuelsson P Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267490 [TBL] [Abstract][Full Text] [Related]
13. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
14. Periodic thermodynamics of open quantum systems. Brandner K; Seifert U Phys Rev E; 2016 Jun; 93(6):062134. PubMed ID: 27415235 [TBL] [Abstract][Full Text] [Related]
16. Effects of the self-propulsion parity on the efficiency of a fuel-consuming active heat engine. Oh Y; Baek Y Phys Rev E; 2023 Aug; 108(2-1):024602. PubMed ID: 37723679 [TBL] [Abstract][Full Text] [Related]
17. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
18. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221 [TBL] [Abstract][Full Text] [Related]
19. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound. Shiraishi N; Tajima H Phys Rev E; 2017 Aug; 96(2-1):022138. PubMed ID: 28950461 [TBL] [Abstract][Full Text] [Related]
20. Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines. Pietzonka P; Seifert U Phys Rev Lett; 2018 May; 120(19):190602. PubMed ID: 29799237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]