These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32058791)

  • 1. Slip Length Dependent Propulsion Speed of Catalytic Colloidal Swimmers near Walls.
    Ketzetzi S; de Graaf J; Doherty RP; Kraft DJ
    Phys Rev Lett; 2020 Jan; 124(4):048002. PubMed ID: 32058791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-Based Height Analysis Reveals Robust Microswimmer-Wall Separation.
    Ketzetzi S; de Graaf J; Kraft DJ
    Phys Rev Lett; 2020 Dec; 125(23):238001. PubMed ID: 33337216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Forces Are Better than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality.
    Ren L; Wang W; Mallouk TE
    Acc Chem Res; 2018 Sep; 51(9):1948-1956. PubMed ID: 30079719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical density functional theory for microswimmers.
    Menzel AM; Saha A; Hoell C; Löwen H
    J Chem Phys; 2016 Jan; 144(2):024115. PubMed ID: 26772562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic approach to the self-diffusiophoresis of colloidal Janus particles.
    Speck T
    Phys Rev E; 2019 Jun; 99(6-1):060602. PubMed ID: 31330705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers.
    Singh TS; Singh P; Yadava RDS
    Soft Matter; 2018 Sep; 14(37):7748-7758. PubMed ID: 30206610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwheels on Microroads: Enhanced Translation on Topographic Surfaces.
    Yang T; Tomaka A; Tasci TO; Neeves KB; Wu N; Marr DWM
    Sci Robot; 2019 Jul; 4(32):. PubMed ID: 31592128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-propulsion of symmetric chemically active particles: Point-source model and experiments on camphor disks.
    Boniface D; Cottin-Bizonne C; Kervil R; Ybert C; Detcheverry F
    Phys Rev E; 2019 Jun; 99(6-1):062605. PubMed ID: 31330666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal swimmers near curved and structured walls.
    Das S; Cacciuto A
    Soft Matter; 2019 Oct; 15(41):8290-8301. PubMed ID: 31616894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near- and far-field hydrodynamic interaction of two chiral squirmers.
    Maity R; Burada PS
    Phys Rev E; 2022 Nov; 106(5-1):054613. PubMed ID: 36559415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic capture of microswimmers into sphere-bound orbits.
    Takagi D; Palacci J; Braunschweig AB; Shelley MJ; Zhang J
    Soft Matter; 2014 Mar; 10(11):1784-9. PubMed ID: 24800268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling kinetics of self-propelled rod-like swimmers near multi sinusoidal substrate.
    Asghar Z; Shah RA; Pasha AA; Rahman MM; Khan MWS
    Comput Biol Med; 2022 Dec; 151(Pt A):106250. PubMed ID: 36368110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion of eccentric microswimmers.
    Debnath D; Ghosh PK; Li Y; Marchesoni F; Li B
    Soft Matter; 2016 Feb; 12(7):2017-24. PubMed ID: 26760136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photopatterned microswimmers with programmable motion without external stimuli.
    Choi Y; Park C; Lee AC; Bae J; Kim H; Choi H; Song SW; Jeong Y; Choi J; Lee H; Kwon S; Park W
    Nat Commun; 2021 Aug; 12(1):4724. PubMed ID: 34354060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic Choreographies of Microswimmers.
    Mirzakhanloo M; Jalali MA; Alam MR
    Sci Rep; 2018 Feb; 8(1):3670. PubMed ID: 29487301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-induced interactions and cooperation of artificial microswimmers in one-dimensional environments.
    Ketzetzi S; Rinaldin M; Dröge P; Graaf J; Kraft DJ
    Nat Commun; 2022 Apr; 13(1):1772. PubMed ID: 35365633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents.
    Brown AT; Poon WC; Holm C; de Graaf J
    Soft Matter; 2017 Feb; 13(6):1200-1222. PubMed ID: 28098324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusiophoretic self-propulsion for partially catalytic spherical colloids.
    de Graaf J; Rempfer G; Holm C
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):272-88. PubMed ID: 25751872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
    ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H
    J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.